# CONDITIONAL IDENTITIES SOLVED PROBLEMS

Trigonometric identities are true for all admissible values of the angle involved. There are some trigonometric identities which satisfy the given additional conditions. Such identities are called conditional trigonometric identities.

Problem 1 :

If A + B + C = 180°, prove that

sin2A + sin2B + sin2C = 2 + 2cosAcosBcosC

Solution :

sin2A + sin2B + sin2C :

= (1 - cos2A)/2 + (1 - cos2B)/2 + (1 - cos2B)/2

= 1/2 - (cos2A)/2 + 1/2 - (cos2B)/2 + 1/2 - (cos2B)/2

= 3/2 - (1/2)[cos2A + cos2B + cos2C]

= 3/2 - (1/2)[2cos(A + B)cos(A - B) + 2cos2C - 1]

= 3/2 - (1/2)[2cos(180 - C)cos(A - B) + 2cos2C - 1]

= 3/2 - (1/2)[-2cosCcos(A - B) + 2cos2C - 1]

= 3/2 - [-cosCcos(A - B) + cos2C] + 1/2

= 3/2 - [-cosCcos(A - B) + cos2C] + 1/2

= 3/2 + 1/2 + cosC[cos(A - B) - cosC]

= 2 + cosC[cos(A - B) - cos(180 - (A + B)]

= 2 + cosC[cos(A - B) + cos(A + B)]

Now let us use the formula for cosC - cosD.

= 2 + cosC[2cosAcosB]

= 2 + 2cosAcosBcosC

Problem 2 :

If A + B + C = 180°, prove that

sin2A + sin2B - sin2C = 2sinAsinBcosC

Solution :

sin2A + sin2B - sin2C :

= (1 - cos2A)/2 + (1 - cos2B)/2 - (1 - cos2C)/2

= 1/2 - (1/2)[cos2A + cos2B - cos2C]

= 1/2 - (1/2)[2cos(A + B)cos(A - B) - cos2C]

= 1/2 - (1/2)[2cos(180 - C)cos(A - B) - cos2C]

= 1/2 - (1/2)[-2cosCcos(A - B) - (2cos2C - 1)]

= 1/2 + cosCcos(A - B) + cos2C - 1/2

= cosC[cos(A - B) + cosC]

= cosC[cos(A - B) + cos(180 - (A + B)]

= cosC[cos(A - B) - cos(A + B)]

= cosC[2sinAsinB]

= 2sinAsinBcosC

Kindly mail your feedback to v4formath@gmail.com

## Recent Articles

1. ### SAT Math Videos

May 22, 24 06:32 AM

SAT Math Videos (Part 1 - No Calculator)

2. ### Simplifying Algebraic Expressions with Fractional Coefficients

May 17, 24 08:12 AM

Simplifying Algebraic Expressions with Fractional Coefficients