CONDITIONAL IDENTITIES SOLVED PROBLEMS

Subscribe to our ▶️ YouTube channel 🔴 for the latest videos, updates, and tips.

Trigonometric identities are true for all admissible values of the angle involved. There are some trigonometric identities which satisfy the given additional conditions. Such identities are called conditional trigonometric identities.

Problem 1 :

If A + B + C = 180°, prove that

 sin2A + sin2B + sin2C = 2 + 2cosAcosBcosC

Solution :

sin2A + sin2B + sin2C :

= (1 - cos2A)/2 + (1 - cos2B)/2 + (1 - cos2B)/2

= 1/2 - (cos2A)/2 + 1/2 - (cos2B)/2 + 1/2 - (cos2B)/2

= 3/2 - (1/2)[cos2A + cos2B + cos2C]

= 3/2 - (1/2)[2cos(A + B)cos(A - B) + 2cos2C - 1]

= 3/2 - (1/2)[2cos(180 - C)cos(A - B) + 2cos2C - 1]

= 3/2 - (1/2)[-2cosCcos(A - B) + 2cos2C - 1]

= 3/2 - [-cosCcos(A - B) + cos2C] + 1/2

= 3/2 - [-cosCcos(A - B) + cos2C] + 1/2

= 3/2 + 1/2 + cosC[cos(A - B) - cosC]

= 2 + cosC[cos(A - B) - cos(180 - (A + B)]

= 2 + cosC[cos(A - B) + cos(A + B)]

Now let us use the formula for cosC - cosD.

= 2 + cosC[2cosAcosB]

= 2 + 2cosAcosBcosC

Problem 2 :

If A + B + C = 180°, prove that

sin2A + sin2B - sin2C = 2sinAsinBcosC

Solution :

 sin2A + sin2B - sin2C :

= (1 - cos2A)/2 + (1 - cos2B)/2 - (1 - cos2C)/2

= 1/2 - (1/2)[cos2A + cos2B - cos2C]

= 1/2 - (1/2)[2cos(A + B)cos(A - B) - cos2C]

= 1/2 - (1/2)[2cos(180 - C)cos(A - B) - cos2C]

  = 1/2 - (1/2)[-2cosCcos(A - B) - (2cos2C - 1)]

  = 1/2 + cosCcos(A - B) + cos2C - 1/2

= cosC[cos(A - B) + cosC]

= cosC[cos(A - B) + cos(180 - (A + B)]

= cosC[cos(A - B) - cos(A + B)]

= cosC[2sinAsinB]

= 2sinAsinBcosC 

Subscribe to our ▶️ YouTube channel 🔴 for the latest videos, updates, and tips.

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

About Us  |  Contact Us  |  Privacy Policy

©All rights reserved. onlinemath4all.com

onlinemath4all_official_badge.png

Recent Articles

  1. US Common Core K-12 Curricum Algebra Solving Simple Equations

    Jan 06, 26 04:54 AM

    US Common Core K-12 Curricum Algebra Solving Simple Equations

    Read More

  2. 10 Hard SAT Math Questions (Part - 4)

    Jan 05, 26 06:56 PM

    digitalsatmath376.png
    10 Hard SAT Math Questions (Part - 4)

    Read More

  3. 10 Hard SAT Math Questions (Part - 3)

    Jan 05, 26 06:34 PM

    digitalsatmath378.png
    10 Hard SAT Math Questions (Part - 3)

    Read More