CONDITIONAL IDENTITIES SOLVED PROBLEMS

Trigonometric identities are true for all admissible values of the angle involved. There are some trigonometric identities which satisfy the given additional conditions. Such identities are called conditional trigonometric identities.

Problem 1 :

If A + B + C = 180°, prove that

 sin2A + sin2B + sin2C = 2 + 2cosAcosBcosC

Solution :

sin2A + sin2B + sin2C :

= (1 - cos2A)/2 + (1 - cos2B)/2 + (1 - cos2B)/2

= 1/2 - (cos2A)/2 + 1/2 - (cos2B)/2 + 1/2 - (cos2B)/2

= 3/2 - (1/2)[cos2A + cos2B + cos2C]

= 3/2 - (1/2)[2cos(A + B)cos(A - B) + 2cos2C - 1]

= 3/2 - (1/2)[2cos(180 - C)cos(A - B) + 2cos2C - 1]

= 3/2 - (1/2)[-2cosCcos(A - B) + 2cos2C - 1]

= 3/2 - [-cosCcos(A - B) + cos2C] + 1/2

= 3/2 - [-cosCcos(A - B) + cos2C] + 1/2

= 3/2 + 1/2 + cosC[cos(A - B) - cosC]

= 2 + cosC[cos(A - B) - cos(180 - (A + B)]

= 2 + cosC[cos(A - B) + cos(A + B)]

Now let us use the formula for cosC - cosD.

= 2 + cosC[2cosAcosB]

= 2 + 2cosAcosBcosC

Problem 2 :

If A + B + C = 180°, prove that

sin2A + sin2B - sin2C = 2sinAsinBcosC

Solution :

 sin2A + sin2B - sin2C :

= (1 - cos2A)/2 + (1 - cos2B)/2 - (1 - cos2C)/2

= 1/2 - (1/2)[cos2A + cos2B - cos2C]

= 1/2 - (1/2)[2cos(A + B)cos(A - B) - cos2C]

= 1/2 - (1/2)[2cos(180 - C)cos(A - B) - cos2C]

  = 1/2 - (1/2)[-2cosCcos(A - B) - (2cos2C - 1)]

  = 1/2 + cosCcos(A - B) + cos2C - 1/2

= cosC[cos(A - B) + cosC]

= cosC[cos(A - B) + cos(180 - (A + B)]

= cosC[cos(A - B) - cos(A + B)]

= cosC[2sinAsinB]

= 2sinAsinBcosC 

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. Time and Work Problems

    Oct 20, 25 07:13 AM

    Time and Work Problems - Concept - Solved Problems

    Read More

  2. 10 Hard SAT Math Questions (Part - 30)

    Oct 17, 25 07:27 PM

    digitalsatmath397.png
    10 Hard SAT Math Questions (Part - 30)

    Read More

  3. 10 Hard SAT Math Questions (Part - 29)

    Oct 16, 25 06:04 AM

    10 Hard SAT Math Questions (Part - 29)

    Read More