In this page compound angles sum and differences we are going to see combination of two formulas in compound angles.
We already know these two formulas
sin (A+B) = sin A cos B + cos A sin B -----(1)
sin (A-B) = sin A cos B - cos A sin B -----(2)
by adding (1) + (2) we will get the new formula
sin(A+B) + sin (A-B)
= sin A cos B + cos A sin B + sin A cos B - cos A sin B
= 2sin A cos B
The new formula is sin(A+B) + sin (A-B) = 2sin A cos B
by subtracting (1) - (2) we will get the new formula
Sin(A+B)-Sin (A-B)
= sin A cos B + cos A sin B - [sin A cos B - cos A sin B]
Sin(A+B)-Sin (A-B)
= sin A cos B + cos A sin B - sin A cos B + cos A sin B
= cos A sin B + cos A sin B
= 2 cos A sin B
So the new formula is
sin (A+B) - sin (A-B) = 2 cos A sin B
cos (A+B) = cos A co
s B - sin A sin B -----(1)
cos (A-B) = cos A cos B + sin A sin B -----(2)
by adding (1) + (2) we will get the new formula
cos(A+B) + cos (A-B)
= cos A cos B - sin A sin B + cos A cos B + sin A sin B
= 2 cos A cos B
So the new formula is
cos(A+B)+cos (A-B) = 2 cos A cos B
by subtracting (1) - (2) we will get the new formula
cos(A+B)-cos (A-B)
= cos A cos B - sin A sin B-[cos A cos B + sin A sin B]
= cos A cos B-sin A sin B-cos A cos B-sin A sin B
= -2sin A sin B
So the new formula is
cos(A+B)-cos (A-B) = -2sin A sin B
The new derived formulas are
sin(A+B)+sin (A-B) = 2 sin A cos B
sin(A+B)-sin (A-B) = 2 cos A sin B
cos(A+B)+cos (A-B) = 2 cos A cos B
cos(A+B)-cos (A-B) = -2sin A sin B
Kindly mail your feedback to v4formath@gmail.com
We always appreciate your feedback.
©All rights reserved. onlinemath4all.com
May 11, 25 12:34 AM
May 10, 25 09:56 AM
May 10, 25 12:14 AM