COMPOUND ANGLES WORKSHEET

1) Use an appropriate compound angle formula to express as a single trig function, and then determine an exact value for each

a)  sin πœ‹/4 cos (πœ‹/12) + cos (πœ‹/4) sin (πœ‹/12)

b)  cos (2πœ‹/9) cos (5πœ‹/18) - sin (2πœ‹/9) sin (5πœ‹/18)

2)  Apply a compound angle formula, and then determine an exact value for each.

a)  tan (πœ‹/4 + πœ‹)

b)  tan (πœ‹/3 - πœ‹/6)

3. Find the value of cos15Β°.

4. Find the value of sin75Β°.

5. Find the value of tan15Β°.

6. Find the value of tan165Β°.

7. If sin A = 4/5 (in quadrant I) and cos B = -12/13 (in quadrant II), then find (i) sin (A - B), (i) cos(A- B). 

8. If sin A = 3/5 and cos B = 9/41 , 0 < A < Ο€/2, 0 < B < Ο€/2, find the value of (i) sin (A + B) (ii) cos (A βˆ’ B).

9. Angles π‘₯ and 𝑦 are located in the first quadrant such that sinπ‘₯ = 3/5 and cos𝑦 = 5/13 . Determine exact values  for cos π‘₯ and sin 𝑦.

1. Answer :

a)  sin (πœ‹/4) cos (πœ‹/12) + cos (πœ‹/4) sin (πœ‹/12)

sin (A + B) = sin A cos B + cos A sin B

Here A = πœ‹/4 and B = πœ‹/12

Using the formula above,

= sin ((πœ‹/4) + (πœ‹/12))

= sin ((3πœ‹ + πœ‹)/12)

= sin (4πœ‹/12)

= sin (πœ‹/3)

√3/2

b)  cos (2πœ‹/9) cos (5πœ‹/18) - sin (2πœ‹/9) sin (5πœ‹/18)

cos (A + B) = cos A  cos B - sin A sin B

Here A = 2πœ‹/9 and B = 5πœ‹/18

Using the formula above,

= cos (2πœ‹/9 + 5πœ‹/18)

= cos ((4πœ‹ + 5πœ‹)/18)

= cos (9πœ‹/18)

= cos (πœ‹/2)

= 0

2. Answer :

a)  tan (πœ‹/4 + πœ‹)

tan (A + B) = tan A + tan B / (1 - tan A tan B)

A = πœ‹/4 and B = πœ‹

= (tan πœ‹/4 + tan πœ‹) / (1 - tan πœ‹/4 tan πœ‹) ----(1)

Evaluating the value of tan πœ‹ :

tan πœ‹ = tan (πœ‹/2 + πœ‹/2)

= cot πœ‹/2

= 1/tan πœ‹/2

= 1/∞

= 0

Applying these values in (1), we get

= (1 + 0)/(1 - 1(0))

= 1/1

= 1

b)  tan (πœ‹/3 - πœ‹/6)

tan (A - B) = (tan A - tan B) / (1 + tan A tan B)

A = πœ‹/3 and B = πœ‹/6

= (tan πœ‹/3 - tan πœ‹/6) / (1 + tan πœ‹/3 tan πœ‹/6) ----(1)

Evaluating the value of tan πœ‹/3 and tan πœ‹/6 :

tan πœ‹/3√3

tan πœ‹/6 = 1/√3

Applying these values in (1), we get 

= (√3 - (1/√3)) / (1 + βˆš3(1/√3))

= [(3 - 1)/√3] / 2

= (2/√3) x (1/2)

= 1/√3

3. Answer :

Write the given angle 15Β° in terms of sum or difference of two standard angles. 

15Β° = 45Β° - 30Β°

cos15Β° = cos(45Β° - 30Β°)

= cos45Β°cos30Β° + sin45Β°sin30Β°

Using the above trigonometric ratio table, we have

= (√2/2) β‹… (√3/2) + (√2/2) β‹… (1/2)

= (√6/4)  +  (√2/4)

= (√6 + βˆš2)/4

4. Answer :

Write the given angle 75Β° in terms of  sum or difference of two standard angles. 

75Β° = 45Β° + 30Β°

sin75Β° = sin(45Β° + 30Β°)

= sin45Β°cos30Β° + cos45Β°sin30Β°

Using the above trigonometric ratio table, we have

= (√2/2) β‹… (√3/2) + (√2/2) β‹… (1/2)

= (√6/4) + (√2/4)

= (√6 + βˆš2)/4

5. Answer :

Write the given angle 15Β° in terms of  sum or difference of two standard angles. 

15Β° = 45Β° - 30Β°

tan15Β° = tan(45Β° - 30Β°)

= (tan45Β° -  tan30Β°)/(1 + tan45Β°tan30Β°)

Using the above trigonometric ratio table, we have

= (1 - 1/√3)/(1 + 1 β‹… 1/√3)

=  (1 - 1/√3)/(1 + 1/√3)

= (√3/√3 - 1/√3)/(√3/√3 + 1/√3)

= [(√3 - 1)/√3]/[(√3 + 1)/√3]

= [(√3 - 1)/√3] x [(√3/(√3 + 1)]

= (√3 - 1)/(√3 + 1)

By rationalizing the denominator, we get

= 2 - βˆš3

6. Answer :

Write the given angle 165Β° in terms of  sum or difference of two standard angles. 

165Β° = 120Β° + 45Β°

tan165Β° = tan(120Β° + 45Β°)

= (tan120Β° + tan45Β°)/(1 - tan120Β°tan45Β°) ----(1)

tan120° = tan(180° - 60°) = -tan60° = -√3.

(1)----> = (-√3 + 1)/[1 - (-√3)(1)]

= (1 - βˆš3)/(1 + βˆš3)

7. Answer :

sin2A + cos2A = 1

cos2A = 1 - sin2A

cosA = Β±βˆš(1 - sin2A)

Substitute sinA = 4/5.

cosA = Β±βˆš[1 - (4/5)2]

= Β±βˆš[1 - 16/25]

= Β±βˆš[(25 - 16)/25]

= Β±βˆš(9/25)

= Β± 3/5

In the first quadrant, cosA is always positive.

cosA = 3/5

And also, 

sin2B + cos2B = 1

sin2B = 1 - cos2B

sinB = Β±βˆš(1 - cos2B)

Substitute cosB = -12/13.

sinB = Β±βˆš[1 - (-12/13)2]

= Β±βˆš[1 - 144/169]

= Β±βˆš[(169 - 144)/169]

= Β±βˆš[25/169]

= Β± 5/13

In the second quadrant sinB is always positive.

sinB = 5/13

sin(A - B) : 

= sinAcosB - cosAsinB

= (4/5)(-12/13) - (3/5)(5/13)

= -48/65 - 15/65

sin(A- B) = -63/65

cos(A - B) : 

= cosAcosB + sinAsinB

= (3/5)(-12/13) + (4/5)(5/13)

= -36/65 + 20/65

cos(A- B) = -16/65

8. Answer :

sinA = 3/5

cosA = βˆš(1 - sin2x)

√(1 - (3/5)2)

√(1 - (9/25))

√(25 - 9)/25

√(16/25)

cosA = 4/5

cosB = 9/41

sinB = βˆš(1 - cos2B)

√(1 - (9/41)2)

√(1 - (81/1681)

√(1681 - 81)/1681

√(1600/1681)

sinB = 40/41

sin(A + B) : 

= sinAcosB + cosAsinB

 = (3/5)(9/41) + (4/15)(40/41)

= (27/205) + (160/205)

= (27 + 160)/205

= 187/205

cos(A - B) :

= cosAcosB + sinAsinB

= (4/5)(9/41) + (3/5)(40/41)

= (36/205) + (120/205)

= (36 + 120)/205

= 156/205

9. Answer :

sin π‘₯ = 3/5

 cos 𝑦 = 5/13

cos x and sin 𝑦

cos π‘₯ = √(1 - sin2x)

= βˆš(1 - (3/5)2)

= βˆš(1 - (9/25))

= √(25 - 9)/25

= βˆš(16/25)

cos π‘₯ = 4/5

sin y = √(1 - cos2y)

= βˆš(1 - (5/13)2)

= βˆš(1 - (25/169))

= √(169 - 25)/169

= βˆš(144/169)

sin y = 12/13

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

Β©All rights reserved. onlinemath4all.com

Recent Articles

  1. Digital SAT Math Problems and Solutions (Part - 213)

    Jul 13, 25 09:51 AM

    digitalsatmath292.png
    Digital SAT Math Problems and Solutions (Part - 213)

    Read More

  2. Digital SAT Math Problems and Solutions (Part - 212)

    Jul 13, 25 09:32 AM

    digitalsatmath290.png
    Digital SAT Math Problems and Solutions (Part - 212)

    Read More

  3. Digital SAT Math Problems and Solutions (Part - 211)

    Jul 11, 25 08:34 AM

    digitalsatmath289.png
    Digital SAT Math Problems and Solutions (Part - 211)

    Read More