Subscribe to our ▶️ YouTube channel 🔴 for the latest videos, updates, and tips.
In this page compound angles sum and differences we are going to see combination of two formulas in compound angles.
We already know these two formulas
sin (A+B) = sin A cos B + cos A sin B -----(1)
sin (A-B) = sin A cos B - cos A sin B -----(2)
by adding (1) + (2) we will get the new formula
sin(A+B) + sin (A-B)
= sin A cos B + cos A sin B + sin A cos B - cos A sin B
= 2sin A cos B
The new formula is sin(A+B) + sin (A-B) = 2sin A cos B
by subtracting (1) - (2) we will get the new formula
Sin(A+B)-Sin (A-B)
= sin A cos B + cos A sin B - [sin A cos B - cos A sin B]
Sin(A+B)-Sin (A-B)
= sin A cos B + cos A sin B - sin A cos B + cos A sin B
= cos A sin B + cos A sin B
= 2 cos A sin B
So the new formula is
sin (A+B) - sin (A-B) = 2 cos A sin B
cos (A+B) = cos A co
s B - sin A sin B -----(1)
cos (A-B) = cos A cos B + sin A sin B -----(2)
by adding (1) + (2) we will get the new formula
cos(A+B) + cos (A-B)
= cos A cos B - sin A sin B + cos A cos B + sin A sin B
= 2 cos A cos B
So the new formula is
cos(A+B)+cos (A-B) = 2 cos A cos B
by subtracting (1) - (2) we will get the new formula
cos(A+B)-cos (A-B)
= cos A cos B - sin A sin B-[cos A cos B + sin A sin B]
= cos A cos B-sin A sin B-cos A cos B-sin A sin B
= -2sin A sin B
So the new formula is
cos(A+B)-cos (A-B) = -2sin A sin B
The new derived formulas are
sin(A+B)+sin (A-B) = 2 sin A cos B
sin(A+B)-sin (A-B) = 2 cos A sin B
cos(A+B)+cos (A-B) = 2 cos A cos B
cos(A+B)-cos (A-B) = -2sin A sin B
Subscribe to our ▶️ YouTube channel 🔴 for the latest videos, updates, and tips.
Kindly mail your feedback to v4formath@gmail.com
We always appreciate your feedback.
About Us | Contact Us | Privacy Policy
©All rights reserved. onlinemath4all.com
Dec 14, 25 06:42 AM
Dec 14, 25 06:38 AM
Dec 13, 25 10:11 AM