Problem 1 :
Expand cos(A + B + C). Hence prove that
cosAcosB cosC = sinAsinB cosC + sinB sinC cosA + sinC sinAcos B, if A + B + C = π/2
Solution :
cos(A + B + C) = cos ( (A + B) + C )
= cos (A + B) cos C - sin (A + B) sin C
= (cos A cos B - sin A sin B) cos C - (sin A cos B - cos A sin B) sin C
cos(A + B + C) = cos A cos B cos C - sin A sin B cos C - sin A cos B sin C - cos A sin B sin C
If A + B + C = π/2
cos π/2 = cos A cos B cos C - sin A sin B cos C - sin A cos B sin C - cos A sin B sin C
The value of cos π/2 is 0.
So, cos A cos B cos C = sin A sin B cos C + sin B sin C cos A + sin C sin A cos B.
Hence proved.
Problem 2 :
Prove that
(i) sin(45° + θ) − sin(45° − θ) = √2 sinθ.
(ii) sin(30° + θ) + cos(60° + θ) = cos θ.
Solution :
(i) sin(45° + θ) − sin(45° − θ) = √2 sinθ :
L.H.S
= sin(45° + θ) − sin(45° − θ)
= sin 45°cos θ + cos 45°sinθ-(sin 45°cosθ - cos 45°sin θ)
= sin 45°cos θ + cos 45°sinθ - sin 45°cosθ + cos 45°sin θ
= 2cos 45°sin θ
= 2(1/√2) sin θ
= √2 sin θ ----> R.H.S
Hence proved.
(ii) sin(30° + θ) + cos(60° + θ) = cos θ :
L.H.S
sin(30° + θ) + cos(60° + θ)
= sin 30°cos θ + cos 30°cos θ + cos 60°cos θ - sin 60°sin θ
= (1/2) cos θ + (√3/2) cos θ + (1/2) cos θ - (√3/2) sin θ
= (1/2) cos θ + (1/2) cos θ
= 2 cos θ / 2
= cos θ
Hence proved.
Problem 3 :
If a cos(x + y) = b cos(x − y), show that (a + b) tanx = (a − b) cot y.
Solution :
a cos(x + y) = b cos(x − y)
a (cos x cos y - sin x sin y) = b (cos x cos y + sin x sin y)
a cos x cos y - a sin x sin y = b cos x cos y + b sin x sin y
a cos x cos y - b cos x cos y = b sin x sin y + a sin x sin y
Factor out cos x cos y on the left side, in the right side factor out sin x sin y
(a - b) cos x cos y = (a + b) sin x sin y
Divide both sides by cos x sin y
(a - b)(cosx cosy/cosx siny) = (a + b)(sinx siny/cosx siny)
(a - b) cot y = (a + b) tan x
Hence proved.
Problem 4 :
Let sin A/sin B = sin (A - C) / sin (C - B), where A, B and C are angles of triangle ABC. If the lengths of the sides opposite these angles are a, b and c respectively then
a) b2 - a2 = a2 + c2 b) b2 , c2, a2 are in A.P
c) c2, a2, b2 are in A.P d) a2, b2, c2 are in A.P
Solution :
sin A/sin B = sin (A - C) / sin (C - B) ---(1)
A + B + C = π
A = π - (B + C)
sin A = sin (π - (B + C))
= sin (B + C)
B = π - (A + C)
sin A = sin (π - (A + C))
= sin (A + C)
Applying these values in (1)
sin (B + C)/sin (A + C) = sin (A - C) / sin (C - B)
sin (C + B) sin (C - B) = sin (A - C) sin (A + C)
sin2 C - sin2 B = sin2 A - sin2 C
sin2 C + sin2 C = sin2 A + sin2 B
2sin2 C = sin2 A + sin2 B
By sine rule,
c2 = a2 + b2
So, a2, b2 and c2 are in arithmetic progression. Option d is correct.
Problem 5 :
cos 10 cos 50 cos 70 = √3/8
Solution :
L.H.S
= cos 10 cos 50 cos 70
Identity to be used :
cos (60 - A) cos (60 + A) cos A = (1/4) cos 3A
50 = 60 - 10
70 = 60 + 10
The angle measures involving in this problem exactly matches with the identity we have.
= (1/4) cos (30)
= 1/4 (√3/2)
= √3/8
Hence it is proved
Problem 6 :
If A + B + C = π, prove that cos2 A + cos2 B + cos2 C = 1 − 2 cos A cos B cos C.
Solution :
cos2 A + cos2 B + cos2 C
= (1/2) [2 cos 2A + 2 cos2 B + 2 cos2 C]
= (1/2) [(1 + cos 2A) + (1 + cos 2B) + (1 + cos 2C)]
= 3/2 + 1/2 [(cos 2A + cos 2B) + cos 2C]
= 3/2 + 1/2 [ cos(A + B) cos(A − B) ] + (2 cos2 C − 1]
= 3/2 + 1/2[−2 cos C cos(A − B)] + 2 cos2 C − 1
(A + B = π − C)
= 3/2 − 1/2 + 1/2 [−2 cos C (cos(A − B) − cos C)]
= 1 − cos C [cos(A − B) − cos C]
= 1 − cos C [cos(A − B) + cos(A + B)]
= 1 − cos C [2 cos A cos B]
= 1 − 2 cos A cos B cos C
Kindly mail your feedback to v4formath@gmail.com
We always appreciate your feedback.
©All rights reserved. onlinemath4all.com
May 03, 25 08:08 AM
May 03, 25 07:47 AM
Apr 30, 25 11:12 PM