COMPARING RATIONAL NUMBERS WORKSHEET

Subscribe to our ▢️ YouTube channel πŸ”΄ for the latest videos, updates, and tips.

Questions 1-12 : Compare the given two rational numbers.

Question 1 :

³⁄₇ and ⁡⁄₇

Question 2 :

β…— and β…–

Question 3 :

⁻³⁄₇ and ⁻⁡⁄₇

Question 4 :

⁻⁡⁄₇ and β»β΄β„₇

Question 5 :

⁻²⁄₅ and β…•

Question 6 :

²⁄₇ and β»β…›

Question 7 :

β…™ and ΒΌ

Question 8 :

ΒΎ and β…š

Question 9 :

⁻¹¹⁄₅ and β»Β²ΒΉβ„β‚ˆ

Question 10 :

³⁄₋₄ and β»ΒΉβ„β‚‚

Question 11 :

β…˜ and β…”

Question 12 :

β»Β³β„β‚ˆ and β»Β²β„β‚‹β‚…

Questions 13-14 : Compare the given rational numbers and arrange them in ascending and descending orders.

Question 13 :

⁻⁡⁄₁₂, β»ΒΉΒΉβ„β‚ˆ, β»ΒΉβ΅β„β‚‚β‚„, β»β·β„₋₉, ΒΉΒ²β„₃₆

Question 14 :

⁻¹⁷⁄₁₀, β»β·β„β‚…, 0, ⁻²⁄₄, β»ΒΉβΉβ„β‚‚β‚€

tutoring.png

Answers

1. Answer :

Both ³⁄₇ and ⁡⁄₇ are positive and they have the same denominator 7.

Compare the numerators 3 and 5.

3 < 5

Therefore,

³⁄₇ < β΅β„₇

2. Answer :

Both β…— and β…– are positive with same denominator.

Compare the numerators 3 and 2.

3 > 2

Therefore,

β…— > β…–

3. Answer :

Both ⁻³⁄₇ and ⁻⁡⁄₇ are negative with same denominator.

Compare the numerators -3 and -5.

-3 > -5

Therefore,

⁻³⁄₇ > β»β΅β„₇

4. Answer :

Both ⁻⁡⁄₇ and β»β΄β„₇ are negative with same denominator.

Compare the numerators -5 and -4.

-5 < -4

Therefore,

⁻⁡⁄₇ β»β΄β„₇

5. Answer :

Since ⁻²⁄₅ and β…• are having different signs, the positive rational number is always greater than the negative rational number.

Therefore,

⁻²⁄₅ β…•

6. Answer :

Since ²⁄₇ and β»β…› are having different signs, the positive rational number is always greater than the negative rational number.

Therefore,

²⁄₇ β»β…›

7. Answer :

Since β…™ and ΒΌ are having different denominators, find the least common multiple of the denominators.

Least common multiple of (6, 4) = 12.

Make 12 as denominator for both the fractions by multiplying both the fractions by the approproate numbers. 

Multiply both numerator and denominator of the fraction β…™ by 2 to get the denominator 12.

β½ΒΉΛ£Β²βΎβ„β‚β‚†β‚“β‚‚β‚Ž = Β²β„₁₂ ----(1)

Multiply both numerator and denominator of the fraction ΒΌ by 3 to get the denominator 12.

β½ΒΉΛ£Β³βΎβ„β‚β‚„β‚“β‚ƒβ‚Ž = Β³β„₁₂ ----(2)

In (1) and (2), compare the numerators.

2 < 3

Therefore,

²⁄₁₂ Β³β„₁₂ ----> β…™ ΒΌ

8. Answer :

Since ΒΎ and β…š are having different denominators, find the least common multiple of the denominators.

Least common multiple of (4, 6) = 12.

Make 12 as denominator for both the fractions by multiplying both the fractions by the approproate numbers.

Multiply both numerator and denominator of the fraction ΒΎ by 3 to get the denominator 12.

β½Β³Λ£Β³βΎβ„β‚β‚„β‚“β‚ƒβ‚Ž = βΉβ„₁₂ ----(1)

Multiply both numerator and denominator of the fraction β…š by 2 to get the denominator 12.

β½β΅Λ£Β²βΎβ„β‚β‚†β‚“β‚‚β‚Ž = ΒΉβ°β„₁₂ ----(2)

In (1) and (2), compare the numerators 9 and 10.

9 < 10

Therefore,

⁹⁄₁₂ ΒΉβ°β„₁₂ ----> ΒΎ β…š

9. Answer :

Since ⁻¹¹⁄₅ and β»Β²ΒΉβ„β‚ˆ are having different denominators, find the least common multiple of the denominators.

Least common multiple of (5, 8) = 40.

Make 40 as denominator for both the fractions by multiplying both the fractions by the approproate numbers. 

Multiply both numerator and denominator of the fraction ⁻¹¹⁄₅ by 8 to get the denominator 40.

β½β»ΒΉΒΉΛ£βΈβΎβ„β‚β‚…β‚“β‚ˆβ‚Ž = β»βΈβΈβ„β‚„β‚€ ----(1)

Multiply both numerator and denominator of the fraction β»Β²ΒΉβ„β‚ˆ by 5 to get the denominator 40.

β½β»Β²ΒΉΛ£β΅βΎβ„β‚β‚ˆβ‚“β‚…β‚Ž = β»ΒΉβ°β΅β„β‚„β‚€ ----(2)

In (1) and (2), compare the numerators.

-88 > -105

Therefore,

⁻⁸⁸⁄₄₀ β»ΒΉβ°β΅β„β‚„β‚€ ----> ⁻¹¹⁄₅ β»Β²ΒΉβ„β‚ˆ

10. Answer :

³⁄₋₄ can be written as ⁻³⁄₄.

Since ⁻³⁄₄ and β»ΒΉβ„β‚‚ are having different denominators, find the least common multiple of the denominators.

Least common multiple of (4, 2) = 4.

The fraction ⁻³⁄₄ is already having the denominator 4.

⁻³⁄₄ ----(1)

Multiply both numerator and denominator of the fraction ⁻¹⁄₂ by 2 to get the denominator 4.

β½β»ΒΉΛ£Β²βΎβ„β‚β‚‚β‚“β‚‚β‚Ž = β»Β²β„β‚„ ----(2)

In (1) and (2), compare the numerators.

-3 < -2

Therefore,

⁻³⁄₄ β»Β²β„β‚„ ----> ³⁄₋₄ < β»ΒΉβ„β‚‚

11. Answer :

Since β…˜ and β…” are having different denominators, find the least common multiple of the denominators.

Least common multiple of (5, 3) = 15.

Make 15 as denominator for both the fractions by multiplying both the fractions by the approproate numbers.

Multiply both numerator and denominator of the fraction β…˜ by 3 to get the denominator 15.

β½β΄Λ£Β³βΎβ„β‚β‚…β‚“β‚ƒβ‚Ž = ΒΉΒ²β„₁₅ ----(1)

Multiply both numerator and denominator of the fraction β…” by 5 to get the denominator 15.

β½Β²Λ£β΅βΎβ„β‚β‚ƒβ‚“β‚…β‚Ž = ΒΉβ°β„₁₅ ----(2)

In (1) and (2), compare the numerators.

12 > 10

Therefore,

¹²⁄₁₅ ΒΉβ°β„₁₅ ----> β…˜ β…”

12. Answer :

⁻²⁄₋₅ Β²β„β‚…

Since β»Β³β„β‚ˆ and Β²β„β‚… are having different signs, the positive rational number is always greater than the negative rational number.

Therefore,

β»Β³β„β‚ˆ Β²β„β‚… ----> β»Β³β„β‚ˆ β»Β²β„β‚‹β‚…

13. Answer :

⁻⁡⁄₁₂, β»ΒΉΒΉβ„β‚ˆ, β»ΒΉβ΅β„β‚‚β‚„, β»β·β„₋₉, ΒΉΒ²β„₃₆

Least common multiple of (12, 8, 24, 9, 36) = 144.

β½β»β΅Λ£ΒΉΒ²βΎβ„β‚β‚β‚‚β‚“β‚β‚‚β‚Ž = β»βΆβ°β„₁₄₄

β½β»ΒΉΒΉΛ£ΒΉβΈβΎβ„β‚β‚ˆβ‚“β‚β‚ˆβ‚Ž = β»ΒΉβΉβΈβ„₁₄₄

β½β»ΒΉβ΅Λ£βΆβΎβ„β‚β‚‚β‚„β‚“β‚†β‚Ž = β»βΉβ°β„₁₄₄

β½β»β·Λ£ΒΉβΆβΎβ„β‚β‚‹β‚‰β‚“β‚β‚†β‚Ž = ΒΉΒΉΒ²β„₁₄₄

β½ΒΉΒ²Λ£β΄βΎβ„β‚β‚ƒβ‚†β‚“β‚„β‚Ž = β΄βΈβ„₁₄₄

⁻¹⁹⁸⁄₁₄₄ > ⁻⁹⁰⁄₁₄₄ > ⁻⁢⁰⁄₁₄₄ > ⁴⁸⁄₁₄₄ > ¹¹²⁄₁₄₄

Ascending Order :

β»ΒΉΒΉβ„β‚ˆβ»ΒΉβ΅β„β‚‚β‚„β»β΅β„β‚β‚‚, ΒΉΒ²β„₃₆, β»β·β„₋₉

Descending Order :

β»β·β„β‚‹β‚‰ΒΉΒ²β„β‚ƒβ‚†β»β΅β„β‚β‚‚β»ΒΉβ΅β„β‚‚β‚„β»ΒΉΒΉβ„β‚ˆ

14. Answer :

⁻¹⁷⁄₁₀, β»β·β„β‚…, 0, ⁻²⁄₄, β»ΒΉβΉβ„β‚‚β‚€

Least common multiple of (10, 5, 4, 20) = 20.

β½β»ΒΉβ·Λ£Β²βΎβ„β‚β‚β‚€β‚“β‚‚β‚Ž = β»Β³β΄β„β‚‚β‚€

β½β»β·Λ£β΄βΎβ„β‚β‚…β‚“β‚„β‚Ž = β»Β²βΈβ„β‚‚β‚€

β½β»Β²Λ£β΅βΎβ„β‚β‚„β‚“β‚…β‚Ž = β»ΒΉβ°β„β‚‚β‚€

β½β»ΒΉβΉΛ£ΒΉβΎβ„β‚β‚‚β‚€β‚“β‚β‚Ž = β»ΒΉβΉβ„β‚‚β‚€

⁻³⁴⁄₂₀ > ⁻²⁸⁄₂₀⁻¹⁹⁄₂₀ > ⁻¹⁰⁄₂₀ > 0

Ascending Order :

⁻¹⁷⁄₁₀, β»β·β„β‚…, β»ΒΉβΉβ„β‚‚β‚€, ⁻²⁄₄, 0

Descending Order :

0, ⁻²⁄₄, ⁻¹⁹⁄₂₀, ⁻⁷⁄₅, ⁻¹⁷⁄₁₀

Subscribe to our ▢️ YouTube channel πŸ”΄ for the latest videos, updates, and tips.

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

About Us  |  Contact Us  |  Privacy Policy

Β©All rights reserved. onlinemath4all.com

onlinemath4all_official_badge.png

Recent Articles

  1. 10 Hard SAT Math Questions (Part - 40)

    Dec 25, 25 08:30 AM

    digitalsatmath422.png
    10 Hard SAT Math Questions (Part - 40)

    Read More

  2. 10 Hard SAT Math Questions (Part - 41)

    Dec 24, 25 07:58 PM

    digitalsatmath423.png
    10 Hard SAT Math Questions (Part - 41)

    Read More

  3. ASTC Formula in Trigonometry

    Dec 23, 25 11:34 PM

    astc1
    ASTC Formula in Trigonometry - Concepts - Examples and Solved Problems

    Read More