COMPARING COEFFICIENT OF LINEAR EQUATIONS IN TWO VARIABLES AND SOLVING

Subscribe to our ▶️ YouTube channel 🔴 for the latest videos, updates, and tips.

To compare the coefficients of linear equations in two variables, the equations must be in the form.

a1x + b1y + c1  =  0

a2x + b2y + c2  =  0

The following three cases are possible for any given system of linear equations.

(i)  a1/a2    b1/b2, we get a unique solution

(ii)  a1/a2  =  a1/a = c1/c2, there are infinitely many solutions.

(iii)  a1/a2  =  a1/a ≠  c1/c2, there is no solution

Which of the following pairs of linear equations are consistent/inconsistent? if consistent, obtain the solution graphically. 

Problems 1 :

x + y = 5 and 2 x + 2 y = 10

Solution :

    x + y - 5  =  0

   2 x + 2 y - 10  =  0 

From the given equations, let us find the values of a1, a2, b1, b2, c1 and c2

a1  =  1, b =  1, c1  =  -5

a2  =  2, b =  2, c2  =  -10

a1/a2  =  1/2  -------(1)

b1/b2  = 1/2  -------(2)

c1/c2  =  -5/(-10)  =  1/2  -------(3)

This exactly matches the condition,

a1/a2  =  b1/b2  =  c1/c2

So, the system of equations will have infinitely many solution.

To draw the graph, let us find x and y intercepts.

x + y - 5  =  0

To find x - intercept :

Put y  =  0

x - 5  =  0

 x  =  5

(5, 0)

To find y - intercept :

Put x  =  0

y - 5  =  0

 y  =  5

(0, 5)

Both equations are representing the same line.

Problems 2 :

x - y = 8 and 3x - 3y = 16

Solution :

      x -  y – 8  =  0

     3 x - 3 y -16  =  0

From the given equations, let us find the values of a1, a2, b1, b2, c1 and c2

a1  =  1, b =  -1, c1  =  -8

a2  =  3, b =  -3, c2  =  -16

a1/a2  =  1/3  -------(1)

b1/b2  = (-1)/(-3)  =  1/3  -------(2)

c1/c2  =  -8/(-16)  =  1/2  -------(3)

This exactly matches the condition

 a1/a2  =  b1/b ≠  c1/c2

So, there is no solution. 

Problems 3 :

2x + y - 6 = 0 and 4x - 2y - 4 = 0

Solution :

From the given equations, let us find the values of a1, a2, b1, b2, c1 and c2

a1  =  2, b =  1, c1  =  -6

a2  =  4, b =  -2, c2  =  -4

a1/a2  =  2/4  =  1/2  -------(1)

b1/b2  = 1/(-2)  =  -1/2  -------(2)

c1/c2  =  -6/(-4)  =  3/2  -------(3)

This exactly matches the condition a1/a2  ≠  b1/b2

So, it has unique solution.

Graphing 1st equation,

2 x + y - 6  =  0

y  =  -2x + 6

x-intercept :

Put y  =  0

-2x + 6  =  0

-2x  =  -6

x  =  3

(3, 0)

y-intercept :

Put x  =  0

y  =  -2(0) + 6

y  =  6

(0, 6)

Graphing 2nd equation,

4 x - 2 y - 4 = 0

2y  =  4x - 4

y  =  2x - 2

x-intercept :

Put y  =  0

2x - 2  =  0

2x  =  2

x  =  1

(1, 0)

y-intercept :

Put x  =  0

y  =  2(0) - 2

y  =  -2

(0, -2)

The above lines are intersecting at the point (2, 2). So, the solution is x  =  2 and y  =  2.

Problems 4 :

2x - 2y - 2 = 0

4x - 4y - 5 = 0

Solution :

From the given equations, let us find the values of a1, a2, b1, b2, c1 and c2

a1  =  2, b =  -2, c1  =  -2

a2  =  4, b =  -4, c2  =  -5

a1/a2  =  2/4  =  1/2  -------(1)

b1/b2  = -2/(-4)  =  1/2  -------(2)

c1/c2  =  -2/(-5)  =  2/5  -------(3)

This exactly matches the condition a1/a =  b1/b2 ≠ c1/c2

This exactly matches the condition

 a1/a2  =  b1/b ≠  c1/c2

So, there is no solution. 

Problems 5 :

The pair of equations ax + 2y = 7 and 3x + by = 16 represent parallel lines if

(a) a = b     (b) 3a = 2b     (c) 2a = 3b    (d) ab = 6

Solution :

ax + 2y = 7------(1)

3x + by = 16 ------(2)

Since the given lines are parallel, they must have same slope and different y-intercepts.

2y = -ax + 7

y = (-a/2)x + (7/2)

Slope = -a/2

by = -3x + 16

y = (-3/b) x + (16/b)

Slope = -3/b

-a/2 = -3/b

ab = 6

So, option d is correct.

Problems 6 :

Using the following equations:

(4/x) + 6y = 10 and (1/x) – 6y = 5

find the value of p if p = 3x.

(a) 1     (b) 2     (c) 3    (d) 4

Solution :

(4/x) + 6y = 10 ------(1)

(1/x) – 6y = 5 ------(2)

Let a = 1/x, then 

4a + 6y = 10 ------(1)

a – 6y = 5 ------(2)

Finding the value of a in terms of y,

a = 6y + 5

Applying the value of a, we get

4(6y + 5) + 6y = 10

24y + 20 + 6y = 10

30y = 10 - 20

30y = - 10

y = -10/30

y = -1/3

a = 6(-1/3) + 5

a = -2 + 5

a = 3

1/x = 3

x = 1/3

p = 3x ==> 3(1/3)

p = 1

Option a is correct.

Problems 7 :

The value of k for which the system of equations

x + y – 4 = 0 and 2x + ky = 3

has no solution, is

(a) – 2     (b) ≠ 2    (c) 3    (d) 2

Solution :

x + y – 4 = 0 and 2x + ky = 3

y = -x + 4 ----(1)

ky = -2x + 3

y = (-2/k) x + (3/k) ----(2)

Since the system has no solution, they must be parallel and they will never intersect.

Equating the slopes, we get

-1 = -2/k

k = 2

So, option d is correct.

Subscribe to our ▶️ YouTube channel 🔴 for the latest videos, updates, and tips.

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. 10 Hard SAT Math Questions (Part - 38)

    Dec 08, 25 12:12 AM

    digitalsatmath416.png
    10 Hard SAT Math Questions (Part - 38)

    Read More

  2. SAT Math Practice

    Dec 05, 25 04:04 AM

    satmathquestions1.png
    SAT Math Practice - Different Topics - Concept - Formulas - Example problems with step by step explanation

    Read More

  3. 10 Hard SAT Math Questions (Part - 37)

    Dec 03, 25 07:02 AM

    digitalsatmath411.png
    10 Hard SAT Math Questions (Part - 37)

    Read More