**Combining transformations with dilations :**

When creating an animation, figures need to be translated, reflected, rotated, and sometimes dilated. In this section, we are going to see, how different types of transformations can be combined with dilations.

A rectangle has the vertices (-6, 8), (-2, 8), (-2, 6) and (-6, 6). Apply the indicated series of transformations to the triangle. Each transformation is applied to the image of the previous transformation, not the original figure. Label each image with the steps of the transformation applied.

(i) (x, y) → (x + 7, y - 2)

(ii) Reflection across the x-axis.

(iii) Clockwise rotation of 90° around the origin

(iv) (x, y) → (x + 5, y + 3)

(v) Dilation about the origin with scale factor 3.

Compare the size and shape of the final image to that of the original figure.

**Solution :**

**Step 1 : **

(i) (x, y) → (x + 7, y - 2).

(-6, 8) -----> (1, 6)

(-2, 8) -----> (5, 6)

(-2, 6) -----> (5, 4)

(-6, 6) -----> (1, 4)

Graph the image.

**Step 2 : **

(ii) Reflection across the x-axis.

Since there is a reflection across the x-axis, we have to multiply each y-coordinate by -1. That is,

(x, y) -----> (x, -y)

So, we have

(1, 6) -----> (1, -6)

(5, 6) -----> (5, -6)

(5, 4) -----> (5, -4)

(1, 4) -----> (1, -4)

Graph the image.

**Step 3 : **

(iii) Clockwise rotation of 90° around the origin.

Since there is a rotation of 90° clockwise about the origin, we have multiply each x-coordinate by -1 and interchange x and y coordinates. That is,

(x, y) -----> (y, -x)

So, we have

(1, -6) -----> (-6, -1)

(5, -6) -----> (-6, -5)

(5, -4) -----> (-4, -5)

(1, -4) -----> (-4, -1)

Graph the image.

**Step 4 : **

(iii) (x, y) → (x + 5, y + 3)

(-6, -1) -----> (-1, 2)

(-6, -5) -----> (-1, -2)

(-4, -5) -----> (1, -2)

(-4, -1) -----> (1, 2)

Graph the image.

**Step 5 : **

(iii) (x, y) → (3x, 3y)

(-1, 2) -----> (-3, 6)

(-1, -2) -----> (-3, -6)

(1, -2) -----> (3, -6)

(1, 2) -----> (3, 6)

Graph the image.

**Compare the size and shape of the final image to that of the original figure.**

**Shape : **

Same shape

**Size : **

The sides of rectangle E are three times the lengths of the sides of the original figure.

**Angle Measures : **

Same angle measures

1. Which transformation represents the dilation? How can you tell?

(x, y) → (3x, 3y) ;

The algebraic form of a dilation is

(x, y) → (kx, ky)

In this case, k = 3.

2. A sequence of transformations containing a single dilation is applied to a figure. Are the original figure and its final image congruent? Explain.

No

The dilation would shrink or expand the figure so that it and its final image would not be the same size.

After having gone through the stuff given above, we hope that the students would have understood "Combining transformations with dilations"

Apart from the stuff given above, if you want to know more about "Combining transformations with dilations", please click here

Apart from the stuff given in this section, if you need any other stuff in math, please use our google custom search here.

HTML Comment Box is loading comments...

**WORD PROBLEMS**

**HCF and LCM word problems**

**Word problems on simple equations **

**Word problems on linear equations **

**Word problems on quadratic equations**

**Area and perimeter word problems**

**Word problems on direct variation and inverse variation **

**Word problems on comparing rates**

**Converting customary units word problems **

**Converting metric units word problems**

**Word problems on simple interest**

**Word problems on compound interest**

**Word problems on types of angles **

**Complementary and supplementary angles word problems**

**Markup and markdown word problems **

**Word problems on mixed fractrions**

**One step equation word problems**

**Linear inequalities word problems**

**Ratio and proportion word problems**

**Word problems on sets and venn diagrams**

**Pythagorean theorem word problems**

**Percent of a number word problems**

**Word problems on constant speed**

**Word problems on average speed **

**Word problems on sum of the angles of a triangle is 180 degree**

**OTHER TOPICS **

**Time, speed and distance shortcuts**

**Ratio and proportion shortcuts**

**Domain and range of rational functions**

**Domain and range of rational functions with holes**

**Graphing rational functions with holes**

**Converting repeating decimals in to fractions**

**Decimal representation of rational numbers**

**Finding square root using long division**

**L.C.M method to solve time and work problems**

**Translating the word problems in to algebraic expressions**

**Remainder when 2 power 256 is divided by 17**

**Remainder when 17 power 23 is divided by 16**

**Sum of all three digit numbers divisible by 6**

**Sum of all three digit numbers divisible by 7**

**Sum of all three digit numbers divisible by 8**

**Sum of all three digit numbers formed using 1, 3, 4**

**Sum of all three four digit numbers formed with non zero digits**