# COMBINING TRANSFORMATIONS WITH DILATIONS

When creating an animation, figures need to be translated, reflected, rotated, and sometimes dilated. In this section, we are going to see, how different types of transformations can be combined with dilations.

Example :

A rectangle has the vertices (-6, 8), (-2, 8), (-2, 6) and (-6, 6).  Apply the indicated series of transformations to the triangle. Each transformation is applied to the image of the previous transformation, not the original figure. Label each image with the steps of the transformation applied.

(i)  (x, y) → (x + 7, y - 2)

(ii)  Reflection across the x-axis.

(iii)  Clockwise rotation of 90° around the origin

(iv)  (x, y) → (x + 5, y + 3)

(v)  Dilation about the origin with scale factor 3.

Compare the size and shape of the final image to that of the original figure.

Solution :

Step 1 :

(i)   (x, y) → (x + 7, y - 2).

(-6, 8) -----> (1, 6)

(-2, 8) -----> (5, 6)

(-2, 6) -----> (5, 4)

(-6, 6) -----> (1, 4)

Graph the image. Step 2 :

(ii)  Reflection across the x-axis.

Since there is a reflection across the x-axis, we have to multiply each y-coordinate by -1. That is,

(x, y) -----> (x, -y)

So, we have

(1, 6) -----> (1, -6)

(5, 6) -----> (5, -6)

(5, 4) -----> (5, -4)

(1, 4) -----> (1, -4)

Graph the image. Step 3 :

(iii)  Clockwise rotation of 90° around the origin.

Since there is a rotation of 90° clockwise about the origin, we have multiply each x-coordinate by -1 and interchange x and y coordinates. That is,

(x, y) -----> (y, -x)

So, we have

(1, -6) -----> (-6, -1)

(5, -6) -----> (-6, -5)

(5, -4) -----> (-4, -5)

(1, -4) -----> (-4, -1)

Graph the image. Step 4 :

(iii)  (x, y) → (x + 5, y + 3)

(-6, -1) -----> (-1, 2)

(-6, -5) -----> (-1, -2)

(-4, -5) -----> (1, -2)

(-4, -1) -----> (1, 2)

Graph the image. Step 5 :

(iii)  (x, y) → (3x, 3y)

(-1, 2) -----> (-3, 6)

(-1, -2) -----> (-3, -6)

(1, -2) -----> (3, -6)

(1, 2) -----> (3, 6)

Graph the image. Compare the size and shape of the final image to that of the original figure.

Shape :

Same shape

Size :

The sides of rectangle E are three times the lengths of the sides of the original figure.

Angle Measures :

Same angle measures

## Reflect

1.  Which transformation represents the dilation? How can you tell?

(x, y) → (3x, 3y) ;

The algebraic form of a dilation is

(x, y) → (kx, ky)

In this case, k = 3.

2.  A sequence of transformations containing a single dilation is applied to a figure. Are the original figure and its final image congruent? Explain.

No

The dilation would shrink or expand the figure so that it and its final image would not be the same size. Apart from the stuff given above, if you need any other stuff in math, please use our google custom search here.

You can also visit the following web pages on different stuff in math.

WORD PROBLEMS

Word problems on simple equations

Word problems on linear equations

Algebra word problems

Word problems on trains

Area and perimeter word problems

Word problems on direct variation and inverse variation

Word problems on unit price

Word problems on unit rate

Word problems on comparing rates

Converting customary units word problems

Converting metric units word problems

Word problems on simple interest

Word problems on compound interest

Word problems on types of angles

Complementary and supplementary angles word problems

Double facts word problems

Trigonometry word problems

Percentage word problems

Profit and loss word problems

Markup and markdown word problems

Decimal word problems

Word problems on fractions

Word problems on mixed fractrions

One step equation word problems

Linear inequalities word problems

Ratio and proportion word problems

Time and work word problems

Word problems on sets and venn diagrams

Word problems on ages

Pythagorean theorem word problems

Percent of a number word problems

Word problems on constant speed

Word problems on average speed

Word problems on sum of the angles of a triangle is 180 degree

OTHER TOPICS

Profit and loss shortcuts

Percentage shortcuts

Times table shortcuts

Time, speed and distance shortcuts

Ratio and proportion shortcuts

Domain and range of rational functions

Domain and range of rational functions with holes

Graphing rational functions

Graphing rational functions with holes

Converting repeating decimals in to fractions

Decimal representation of rational numbers

Finding square root using long division

L.C.M method to solve time and work problems

Translating the word problems in to algebraic expressions

Remainder when 2 power 256 is divided by 17

Remainder when 17 power 23 is divided by 16

Sum of all three digit numbers divisible by 6

Sum of all three digit numbers divisible by 7

Sum of all three digit numbers divisible by 8

Sum of all three digit numbers formed using 1, 3, 4

Sum of all three four digit numbers formed with non zero digits

Sum of all three four digit numbers formed using 0, 1, 2, 3

Sum of all three four digit numbers formed using 1, 2, 5, 6 