# COMBINATIONS WORD PROBLEMS EXAMPLES

Combinations Word Problems Examples :

In this section, we are going to see some combinations problems in the real world context.

## Combinations Word Problems Examples

Example 1 :

Kabaddi coach has 14 players ready to play. How many different teams of 7 players could the coach put on the court?

Solution :

Number of ways of selecting 7 players out of 14 players

=  14C7

=  14! / (14 - 7)! 7!

=  14! / 7! 7!

=  (14 ⋅ 13 ⋅ 12 ⋅ 11 ⋅ 10 ⋅ 9 ⋅ 8 ⋅ 7!)/7! 7!

=  (14 ⋅ 13 ⋅ 12 ⋅ 11 ⋅ 10 ⋅ 9 ⋅ 8) / 7!

=  (14 ⋅ 13 ⋅ 12 ⋅ 11 ⋅ 10 ⋅ 9 ⋅ 8) / (7 ⋅ 6 ⋅ 5 ⋅ 4 ⋅ 3 ⋅ 2)

=  3432

Example 2 :

There are 15 persons in a party and if each 2 of them shakes hands with each other, how many handshakes happen in the party?

Solution :

Before going to look into the solution of this problem, let us create a model. By comparing the above results, we may conclude the formula to find number of hand shakes

Number of hand shakes  =  n (n - 1)/2

Here we divide n (n - 1) by 2, because of avoiding repetition.

Number of persons in a party  =  15

Number  of hand shakes can be made  =  15 (15 - 1) / 2

=  15 (14)/2

=  15 (7)

=  105

Example 3 :

How many chords can be drawn through 20 points on a circle?

Solution :

20 points lie on the circle. By joining any two points on the circle, we may draw a chord.

Number of chords can be drawn  =  20C2

=  20!/(20 - 2)! 2!

=  20! / 18! 2!

=  (20 ⋅ 19) / 2

=  190

Hence the required number of chords can be drawn is 190.

Example 4 :

In a parking lot one hundred , one year old cars, are parked. Out of them five are to be chosen at random for to check its pollution devices. How many different set of five cars can be chosen?

Solution :

In the given question, we have a word "different set of five cars".

So we have to use the concept combination.

Number of ways of choosing 5 cars  =  100C5

Example 5 :

How many ways can a team of 3 boys, 2 girls and 1 transgender be selected from 5 boys, 4 girls and 2 transgenders?

Solution :

 Total number of boys Number of boys to be selected Ways 5 3 5C3  =  10
 Total number of girls Number of girls to be selected Ways 4 2 4C2  =  6
 Total number of transgenders Number of transgenders to be selected Ways 2 1 2C1  =  2

Total number of ways  =  10 ⋅  2

=  120 ways

Hence the total number of ways is 120. After having gone through the stuff given above, we hope that the students would have understood, how to solve word problems on combinations.

Apart from the stuff given in this section, if you need any other stuff in math, please use our google custom search here.

You can also visit our following web pages on different stuff in math.

WORD PROBLEMS

Word problems on simple equations

Word problems on linear equations

Algebra word problems

Word problems on trains

Area and perimeter word problems

Word problems on direct variation and inverse variation

Word problems on unit price

Word problems on unit rate

Word problems on comparing rates

Converting customary units word problems

Converting metric units word problems

Word problems on simple interest

Word problems on compound interest

Word problems on types of angles

Complementary and supplementary angles word problems

Double facts word problems

Trigonometry word problems

Percentage word problems

Profit and loss word problems

Markup and markdown word problems

Decimal word problems

Word problems on fractions

Word problems on mixed fractrions

One step equation word problems

Linear inequalities word problems

Ratio and proportion word problems

Time and work word problems

Word problems on sets and venn diagrams

Word problems on ages

Pythagorean theorem word problems

Percent of a number word problems

Word problems on constant speed

Word problems on average speed

Word problems on sum of the angles of a triangle is 180 degree

OTHER TOPICS

Profit and loss shortcuts

Percentage shortcuts

Times table shortcuts

Time, speed and distance shortcuts

Ratio and proportion shortcuts

Domain and range of rational functions

Domain and range of rational functions with holes

Graphing rational functions

Graphing rational functions with holes

Converting repeating decimals in to fractions

Decimal representation of rational numbers

Finding square root using long division

L.C.M method to solve time and work problems

Translating the word problems in to algebraic expressions

Remainder when 2 power 256 is divided by 17

Remainder when 17 power 23 is divided by 16

Sum of all three digit numbers divisible by 6

Sum of all three digit numbers divisible by 7

Sum of all three digit numbers divisible by 8

Sum of all three digit numbers formed using 1, 3, 4

Sum of all three four digit numbers formed with non zero digits

Sum of all three four digit numbers formed using 0, 1, 2, 3

Sum of all three four digit numbers formed using 1, 2, 5, 6 