CHECK GIVEN FOUR POINTS FORM SQUARE

Subscribe to our ▶️ YouTube channel 🔴 for the latest videos, updates, and tips.

(i)  Plot the given points in the graph and draw the square.

(ii)  Now we need to find the length of all sides.

(iii)  In a square length of all sides are equal.

(iv)  Length of diagonals are also equal

If we prove the above two conditions(iii, iv) are true, we can decide that the given points form a square.

Question 1 :

Examine whether the given points 

A (-9, -7), B (-6, -7), C (-6, -4) and D (-9, -4)

form a square.

Solution :

Step 1 :

Step 2 :

Finding the length of all sides.

Distance Between Two Points (x1, y1) and (x2, y2)

√(x2 - x1)2 + (y2 - y1)2

Length of side AB :

Here x1 = -9, y1 = -7, x2 = -6  and  y2 = -7

=  √(-6-(-9))² + (-7-(-7))²

=  √(-6+9)² + (-7+7)²

=  √3² + 0²

=  √9

=  3 units ---(1)

Length of side BC :

Here x1 = -6, y1 = -7, x2 = -6  and  y2 = -4

=  √(-6-(-6))² + (-4-(-7))²

=  √(-6+6)² + (-4+7)²

=  √0² + 3²

=  √9

=  3 units ---(2)

Length of side CD :

Here x1 = -6, y1 = -4, x2 = -9  and  y2 = -4

=  √(-9-(-6))² + (-4-(-4))²

=  √(-9+6)² + (-4+4)²

=  √(-3)² + 0²

=    √9

=  3 units ---(3)

Length of side DA :

Here x1 = -9, y1 = -4, x2 = -9  and  y2 = -7

=  √(-9-(-9))² + (-7-(-4))²

=  √(-9+9)² + (-7+4)²

=  √0² + 3²

=  √9

=  3 units ---(4)

(1) = (2) = (3) = (4)

Length of all sides are equal.

Step 3 :

Length of diagonal AC :

Here x1 = -9, y1 = -7, x2 = -6  and  y2 = -4

=  √(-6-(-9))2 + (-4-(-7))2

=  √(-6+9)² + (-4+7)²

=  √3² + 3²

=  √9 + 9

=  √18 units

Length of diagonal BD :

Here x1 = -6, y1 = -7, x2 = -9  and  y2 = -4

=  √(-9-(-6))2 + (-4-(-7))2

=  √(-9+6)2 + (-4+7)2

=  √(-3)2 + 32

=  √9 + 9

=  √18 units

Length of diagonal AC  =  Length of diagonal BD

So, the given points are vertices of square.

Question 2 :

Examine whether the given points

A (1, 2), B (2, 2), C (2, 3) and D (1, 3)

forms a square.

Solution :

Step 1 :

Step 2 :

Let the given points are A (1, 2) and B (2, 2) and C (2, 3) and D (1, 3).

Length of side AB :

Here x1 = 1, y1 = 2, x2 = 2  and  y2 = 2

=  √(2-1)² + (2-2)²

=  √(1)² + (0)²

=  √1 + 0²

=  1 unit ----(1)

Length of side BC :

Here x1 = 2, y1 = 2, x2 = 2  and  y2 = 3

=  √(2-2)² + (3-2)²

=  √(0)² + (1)²

=  √0² + 1

=  1 unit ----(2)

Length of side CD :

Here x1 = 2, y1 = 3, x2 = 1  and  y2 = 3

=  √(1-2)² + (3-3)²

=  √(-1)² + (0)²

=  √1 + 0²

=  1 unit ----(3)

Length of side CD :

Here x1 = 1, y1 = 3, x2 = 1  and  y2 = 2

=  √(1-1)² + (2-3)²

=  √(0)² + (-1)²

=  √0 + 1

=  1 unit  ----(4)

(1) = (2) = (3) = (4)

Step 3 :

Length of diagonal AC :

Here x1 = 1, y1 = 2, x2 = 2  and  y2 = 3

=  √(2-1)² + (3-2)²

=  √(1)² + 1²

=  √1 + 1

=  √2 units

Length of diagonal BD :

Here x1 = 2, y1 = 2, x2 = 1  and  y2 = 3

=  √(1-2)2 + (3-2)2

=  √(-1)2 + (1)

=  √1 + 1

=  √2 units

Length of diagonal AC  =  Length of diagonal BD

So, the given points are vertices of square.

Subscribe to our ▶️ YouTube channel 🔴 for the latest videos, updates, and tips.

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. SAT Math Practice

    Dec 05, 25 04:04 AM

    satmathquestions1.png
    SAT Math Practice - Different Topics - Concept - Formulas - Example problems with step by step explanation

    Read More

  2. 10 Hard SAT Math Questions (Part - 37)

    Dec 03, 25 07:02 AM

    digitalsatmath411.png
    10 Hard SAT Math Questions (Part - 37)

    Read More

  3. Factorial Problems and Solutions

    Dec 02, 25 09:27 AM

    Factorial Problems and Solutions

    Read More