BINOMIAL THEOREM WORKSHEET

1. Find the expansion of (2x + 3)5.

2. Find the expansion of (3x - 2)5.

3. Evaluate 984.

4. Find the middle term in the expansion of (x + y)6.

5. Find the middle term in the expansion of (x + y)7.

6. Find the coefficient of x6 in the expansion of

(3 + 2x)10

7. Find the coefficient of x3 in the expansion of

(2 - 3x)7

8. Find the coefficient of x15 in the expansion of 

(x2 + 1/x3)10

Answers

1. Answer :

(2x + 3)5

(a + b)n = nC0an + nC1an-1b1 + nC2an-2b2 + nC3an-3b3.............  ...................+ nCran-rb+ ........ nCnbn

Substitute a = 2x and b = 3.

(2x + 3)n

5C0(2x)5 + 5C1(2x)5-131 + 5C2(2x)5-232

5C3(2x)5-335C4(2x)5-434 5C5(2x)5-535

= 1(2x)5 + 5(2x)4(3) + 10(2x)3(9)

+ 10(2x)2(27) + 5(2x)1(81) + 1(2x)0(243)

= 32x5 + 15(16x4) + 90(8x3+ 270(4x2) + 405(2x) + 243

= 32x5 + 240x4 + 7208x3 + 1080x2 + 810x + 243

2. Answer :

(3x - 2)5

(a + b)n = nC0an + nC1an-1b1 + nC2an-2b2 + nC3an-3b3.............  ...................+ nCran-rb+ ........ nCnbn

Substitute a = 3x and b = -2.

(3x - 2)n

5C0(3x)5 + 5C1(3x)5-1(-2)1 + 5C2(3x)5-2(-2)2

5C3(3x)5-3(-2)5C4(3x)5-4(-2)4 5C5(3x)5-5(-2)5

= 1(3x)5 + 5(3x)4(-2) + 10(3x)3(4) 

+ 10(3x)2(-8) + 5(3x)1(16) + 1(3x)0(-32)

= 243x5 - 10(81x4) + 40(27x3) - 80(9x2) + 80(3x) - 32

= 243x5 - 810x4 + 1080x3 - 720x2 + 240x - 32

3. Answer :

984 = (100 - 2)4

4C0(100)4 - 4C11004-121 + 4C21004-222

4C31004-324C41004-424

= 1(100)4 - 4(1003)(2) + 6(1002)(4) 

- 4(100)(8) + 1(1000)(16)

= 100000000 - 4(1000000)(2) + 6(10000)(4)

- 4(100)(8) 16

= 100000000 - 8000000 + 240000 - 3200 + 16

= 92236816

4. Answer :

(x + y)6

Here, the exponent is 6.

Since we have to find the middle in the expansion, divide the exponent 6 by 2.

6/2 = 3

So, the middle term in the expansion (x + y)6 is the term containing x3y3.

That is, 

= 6C3x3y3

= 20x3y3

5. Answer :

(x + y)7

Here, the exponent is 7.

Since we have to find the middle in the expansion, divide the exponent 7 by 2.

7/2 = 3.5

3.5 is the value between 3 and 4.

So, there are two middle terms containing x4y3 and x3y4.

So, the middle term in the expansion (x + y)6 is the term containing x3y3.

They are

7C3x4yand 7C4x3y4

= 35x4y3  and 35x3y4

6. Answer :

In the expansion of (3 + 2x)10, we will have x6 in the term containing (2x)6.

Comparing (a + b)10 and (3 + 2x)10,

a = 3  and  b = 2x

In the expansion of (a + b)10, the term containing b6 is

= 10C6a4b6

Substitute a = 3 and b = 2x.

10C6(3)4(2x)6

10C4(81)(64x6)

= 210(81)(64x6)

= 1088640x6

So, the coefficient of x6 is 1088640.

7. Answer :

In the expansion of (2 - 3x)7, we will have xin the term containing (-3x)3.

Comparing (a + b)7 and (2 - 3x)7,

a = 2  and  b = -3x

In the expansion of (a + b)7, the term containing b3 is

7C3a4b3

Substitute a = 2 and b = -3x.

7C3(2)4(-3x)3

= 35(16)(-27x3)

= -15120x3

So, the coefficient of x3 is -15120.

8. Answer :

(x2 + 1/x3)10

In the expansion of (x2 + 1/x3)10

1st term will contain :

= (x2)10(1/x3)0

= x20(1)

2nd term will contain :

= (x2)9(1/x3)1

= (x18)(1/x3)

= (x18)(x-3)

= x18-3

= x15

In the expansion of (x2 + 1/x3)10, the send term contains x15.

The second term in the expansion of (x2 + 1/x3)10,

= 10C1(x2)9(1/x3)1

= 10(x18)(x-3)

= 10x18 - 3

= 10x15

So, the coefficient of x15 is 10.

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. Digital SAT Math Problems and Solutions (Part - 171)

    May 27, 25 10:11 AM

    digitalsatmath216.png
    Digital SAT Math Problems and Solutions (Part - 171)

    Read More

  2. Digital SAT Math Problems and Solutions (Part - 170)

    May 26, 25 08:53 AM

    digitalsatmath215.png
    Digital SAT Math Problems and Solutions (Part - 170)

    Read More

  3. Digital SAT Math Problems and Solutions (Part - 169)

    May 25, 25 06:47 AM

    digitalsatmath212.png
    Digital SAT Math Problems and Solutions (Part - 169)

    Read More