BINOMIAL EXPANSION FORMULA FOR 1 PLUS X WHOLE POWER N

Subscribe to our ▶️ YouTube channel 🔴 for the latest videos, updates, and tips.

Here we are going to see the formula for the binomial expansion formula for 1 plus x whole power n.

(1 + x)n

(1 - x)n

(1 + x)-n

(1 - x)-n

Note :

When we have negative signs for either power or in the middle, we have negative signs for alternative terms.

If we have negative for power, then the formula will change from (n - 1) to (n + 1) and (n - 2) to (n + 2).

If we have negative signs for both middle term and power, we will have a positive sign for every term.

Example 1 :

Write the first four terms in the expansion of (1 + 4x)-5  where |x| < 1/4

Solution :

| 4x | = 4 | x | < 4 (1/4)  =  1      4x | < 1

(1 + 4x)− 5 can be expanded by Binomial theorem.

x = 4x , n = 5

  =  1 - 5 (4x) + (5 (5+1)/2!) (4x)2

         - (5 (5+1) (5+2)/3!) (4x)+ .........

  =  1 - 20x + 15 (16x2- 35 (64x3) + .........

  =  1 - 20x + 240x2 - 2240x3 + .........

Example 2 :

Write the first four terms in the expansion of (1 - x2)-4  where |x| < 1

Solution :

 (1 - x2)-4  can be expanded by binomial theorem since

|x2| < 1 

  =  1 + 4 (x2) + (4 (4+1) /2!)(x2)2+ (4 (4+1) (4+2)/3!)(x2)3+ ...........

  =  1 + 4 (x2) + (4x5/2!)x4+ (4x5x6/3!)x6+ ...........

  =  1 + 4 x2 + 10 x4+ 20 x6+ ...........

Example 3 :

Write the first four terms in the expansion of (1 - x2)-4  where |x| < 1

Solution :

 (1 - x2)-4  can be expanded by binomial theorem since

|x2| < 1 

  =  1 + 4 (x2) + (4 (4+1) /2!)(x2)2+ (4 (4+1) (4+2)/3!)(x2)3+ ...........

  =  1 + 4 (x2) + (4x5/2!)x4+ (4x5x6/3!)x6+ ...........

  =  1 + 4 x2 + 10 x4+ 20 x6+ ...........

Example 4 :

Find the expansion of 1/(2 + x)4 where |x| < 2 upto the fourth term.

Solution :

1/(2 + x)4  =  (2 + x)-4 2-4 (1 + x/2)-4 can be expanded by binomial theorem since

|x/2| < 1 

Example 5 :

Find the value of 126 correct to two decimal places.

Solution :

 126 = (126)1/3

   =  (125 + 1)1/3 

   =  [125 (1 + (1/125))]1/3

   =  1251/3(1 + (1/125))1/3           1/125 < 1

   = 5 [1 + (1/3)(1/125) + ..........]

   = 5 [1 + (1/3)(0.008)]

   = 5 [1 + 0.002666]

= 5.01 (correct to 2 decimal places)

Subscribe to our ▶️ YouTube channel 🔴 for the latest videos, updates, and tips.

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

About Us  |  Contact Us  |  Privacy Policy

©All rights reserved. onlinemath4all.com

Recent Articles

  1. Quantitative Reasoning Questions and Answers

    Dec 14, 25 06:42 AM

    Quantitative Reasoning Questions and Answers

    Read More

  2. Specifying Units of Measure

    Dec 14, 25 06:38 AM

    Specifying Units of Measure

    Read More

  3. Coin Tossing Probability

    Dec 13, 25 10:11 AM

    Coin Tossing Probability - Concept - Sample Space - Formula - Solved Problems

    Read More