BINOMIAL EXPANSION FORMULA FOR 1 PLUS X WHOLE POWER N

Subscribe to our ▶️ YouTube channel 🔴 for the latest videos, updates, and tips.

Here we are going to see the formula for the binomial expansion formula for 1 plus x whole power n.

(1 + x)n

(1 - x)n

(1 + x)-n

(1 - x)-n

Note :

When we have negative signs for either power or in the middle, we have negative signs for alternative terms.

If we have negative for power, then the formula will change from (n - 1) to (n + 1) and (n - 2) to (n + 2).

If we have negative signs for both middle term and power, we will have a positive sign for every term.

Example 1 :

Write the first four terms in the expansion of (1 + 4x)-5  where |x| < 1/4

Solution :

| 4x | = 4 | x | < 4 (1/4)  =  1      4x | < 1

(1 + 4x)− 5 can be expanded by Binomial theorem.

x = 4x , n = 5

  =  1 - 5 (4x) + (5 (5+1)/2!) (4x)2

         - (5 (5+1) (5+2)/3!) (4x)+ .........

  =  1 - 20x + 15 (16x2- 35 (64x3) + .........

  =  1 - 20x + 240x2 - 2240x3 + .........

Example 2 :

Write the first four terms in the expansion of (1 - x2)-4  where |x| < 1

Solution :

 (1 - x2)-4  can be expanded by binomial theorem since

|x2| < 1 

  =  1 + 4 (x2) + (4 (4+1) /2!)(x2)2+ (4 (4+1) (4+2)/3!)(x2)3+ ...........

  =  1 + 4 (x2) + (4x5/2!)x4+ (4x5x6/3!)x6+ ...........

  =  1 + 4 x2 + 10 x4+ 20 x6+ ...........

Example 3 :

Write the first four terms in the expansion of (1 - x2)-4  where |x| < 1

Solution :

 (1 - x2)-4  can be expanded by binomial theorem since

|x2| < 1 

  =  1 + 4 (x2) + (4 (4+1) /2!)(x2)2+ (4 (4+1) (4+2)/3!)(x2)3+ ...........

  =  1 + 4 (x2) + (4x5/2!)x4+ (4x5x6/3!)x6+ ...........

  =  1 + 4 x2 + 10 x4+ 20 x6+ ...........

Example 4 :

Find the expansion of 1/(2 + x)4 where |x| < 2 upto the fourth term.

Solution :

1/(2 + x)4  =  (2 + x)-4 2-4 (1 + x/2)-4 can be expanded by binomial theorem since

|x/2| < 1 

Example 5 :

Find the value of 126 correct to two decimal places.

Solution :

 126 = (126)1/3

   =  (125 + 1)1/3 

   =  [125 (1 + (1/125))]1/3

   =  1251/3(1 + (1/125))1/3           1/125 < 1

   = 5 [1 + (1/3)(1/125) + ..........]

   = 5 [1 + (1/3)(0.008)]

   = 5 [1 + 0.002666]

= 5.01 (correct to 2 decimal places)

Subscribe to our ▶️ YouTube channel 🔴 for the latest videos, updates, and tips.

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

About Us  |  Contact Us  |  Privacy Policy

©All rights reserved. onlinemath4all.com

onlinemath4all_official_badge1.png

Recent Articles

  1. 10 Hard SAT Math Questions (Part - 45)

    Jan 19, 26 06:14 AM

    digitalsatmath424.png
    10 Hard SAT Math Questions (Part - 45)

    Read More

  2. 10 Hard SAT Math Questions (Part - 44)

    Jan 12, 26 06:35 AM

    10 Hard SAT Math Questions (Part - 44)

    Read More

  3. US Common Core K-12 Curricum Algebra Solving Simple Equations

    Jan 07, 26 01:53 PM

    US Common Core K-12 Curricum Algebra Solving Simple Equations

    Read More