ARITHMETIC GEOMETRIC AND HARMONIC PROGRESSION

Subscribe to our ā–¶ļø YouTube channel šŸ”“ for the latest videos, updates, and tips.

Question :

Write the first 6 terms of the sequences whose nth terms are given below and classify them as arithmetic progression, geometric progression, arithmetico-geometric progression, harmonic progression and none of them.

(i)  1/2n+1

(ii)  (n + 1)(n + 2) / (n + 3)(n + 4)

(iii) 4 (1/2)n

(iv) (āˆ’1)n/n

(v) (2n+3) / (3n+4)

(vi) 2018

(vii) (3nāˆ’2)/(3nāˆ’1)

Solution :

(i)  1/2n+1

Let tn  =  1/2n+1

n  =  1

t1  =  1/21+1 

=  1/4  

n  =  2

t2  =  1/22+1 

=  1/8  

n  =  3

t3  =  1/23+1 

=  1/16  

n  =  4

t4  =  1/24+1 

=  1/32  

n  =  5

t5  =  1/25+1 

=  1/64  

n  =  6

t6  =  1/26+1 

=  1/128  

First 6 terms of the sequence are,

1/4, 1/8, 1/16, 1/32, 1/64, 1/128,............

Since the common ratio is same, it is GP.

(ii)  (n + 1)(n + 2) / (n + 3)(n + 4)

Solution :

Let tn  =  (n + 1)(n + 2) / (n + 3)(n + 4)

n  =  1

t1 = (1+1)(1+2)/(1+3)(1+4)

=  6/20

n  =  2

t1 = (2+1)(2+2)/(2+3)(2+4)

=  12/30

n  =  3

t3 = (3+1)(3+2)/(3+3)(3+4)

=  20/42

n  =  4

t4 = (4+1)(4+2)/(4+3)(4+4)

=  30/56

n  =  5

t3 = (5+1)(5+2)/(5+3)(5+4)

=  42/72

n  =  6

t3 = (6+1)(6+2)/(6+3)(6+4)

=  56/90

First 6 terms of the sequence are,

6/20, 12/30, 20/42, 30/56, 42/72, 56/90,............

Common difference is not same, so it is not A.P

Common ratio is not same, so it is not G.P

It is not H.P

Hence the answer is none of them.

(iii) 4 (1/2)n

Solution :

Let tn  =  4 (1/2)n

n  =  1

t1  =  4 (1/2)n  

=  4(1/2)1

=  2

n  =  2

t2  =  4 (1/2)n  

=  4(1/2)2

=  1

n  =  3

t3  =  4 (1/2)n  

=  4(1/2)3

=  1/2

n  =  4

t4  =  4 (1/2)4  

=  1/4

n  =  5

t5  =  4 (1/2)5  

=  1/8

n  =  6

t6  =  4 (1/2)6  

=  1/16

First 6 terms of the sequence are,

2, 1, 1/2, 1/4, 1/8, 1/16,....................

The common ratio is same, so it is G.P

(iv) (āˆ’1)n/n

Solution :

n  =  1

t1  =  -1/1

=  -1

n  =  2

t2  =  1/2

n  = 3

t2  =  -1/3

n  = 4

t4  =  1/4

n  =  5

t5  =  -1/5

n  =  6

t6  =  1/6

First 6 terms of the sequence are,

-1, 1/2, -1/3, 1/4, -1/5, 1/6, .................

Common difference is not same, so it is not A.P

Common ratio is not same, so it is not G.P

It is not H.P

Hence the answer is none of them.

(v) (2n+3) / (3n+4)

Solution :

Let tn  =  (2n+3) / (3n+4)

n  =  1

t= 5/7

n  =  2

  t= 7/10

n  =  3

  t= 9/13

n  =  4

  t= 11/16

n  =  5

t5  =  13/19

n  =  6

t6  =  15/22

First 6 terms of the sequence are,

5/7, 7/10, 9/13, 11/16, 13/19, 15/22,....................

Hence the answer is none of these.

(vi) 2018

Solution :

The answer is none of these.

(vii) (3nāˆ’2)/(3nāˆ’1)

Solution :

Let tn  =  (3nāˆ’2)/(3nāˆ’1)

n  =  1

t= 1/1 = 1

n  =  2

  t= 4/3

n  =  3

  t= 7/9

n  =  4

  t= 10/27

n  =  5

t5  =  13/81

n  =  6

t6  =  16/243

First 6 terms of the sequence are,

1, 4/3, 7/9, 10/27, 13/81, 16/243, .............

Hence the answer is arithmetico-geometric progression.

Subscribe to our ā–¶ļø YouTube channel šŸ”“ for the latest videos, updates, and tips.

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

About Us  |  Contact Us  |  Privacy Policy

©All rights reserved. onlinemath4all.com

Recent Articles

  1. Quantitative Reasoning Questions and Answers

    Dec 14, 25 06:42 AM

    Quantitative Reasoning Questions and Answers

    Read More

  2. Specifying Units of Measure

    Dec 14, 25 06:38 AM

    Specifying Units of Measure

    Read More

  3. Coin Tossing Probability

    Dec 13, 25 10:11 AM

    Coin Tossing Probability - Concept - Sample Space - Formula - Solved Problems

    Read More