# ARITHMETIC GEOMETRIC AND HARMONIC PROGRESSION

Arithmetic Geometric and Harmonic Progression :

In this section, we will learn, how to check the nth term of the given sequence is arithmetic progression, geometric progression or harmonic progression.

## Arithmetic Geometric and Harmonic Progression - Example

Example 1 :

Write the first 6 terms of the sequences whose nth terms are given below and classify them as arithmetic progression, geometric progression, arithmetico-geometric progression, harmonic progression and none of them.

(i)  1/2n+1

(ii)  (n + 1)(n + 2) / (n + 3)(n + 4)

(iii) 4 (1/2)n

(iv) (−1)n/n

(v) (2n+3) / (3n+4)

(vi) 2018

(vii) (3n−2)/(3n−1)

Solution :

(i)  1/2n+1

Let tn  =  1/2n+1

 n  =  1t1  =  1/21+1  =  1/4 n  =  2t2  =  1/22+1 =  1/8 n  =  3t3  =  1/23+1 =  1/16 n  =  4t4  =  1/24+1 =  1/32 n  =  5t5  =  1/25+1 =  1/64 n  =  6t6  =  1/26+1 =  1/128

First 6 terms of the sequence are,

1/4, 1/8, 1/16, 1/32, 1/64, 1/128,............

Since the common ratio is same, it is GP.

(ii)  (n + 1)(n + 2) / (n + 3)(n + 4)

Solution :

Let tn  =  (n + 1)(n + 2) / (n + 3)(n + 4)

 n  =  1t1 = (1+1)(1+2)/(1+3)(1+4)=  6/20 n  =  2t1 = (2+1)(2+2)/(2+3)(2+4)=  12/30 n  =  3t3 = (3+1)(3+2)/(3+3)(3+4)=  20/42 n  =  4t4 = (4+1)(4+2)/(4+3)(4+4)=  30/56 n  =  5t3 = (5+1)(5+2)/(5+3)(5+4)=  42/72 n  =  6t3 = (6+1)(6+2)/(6+3)(6+4)=  56/90

First 6 terms of the sequence are,

6/20, 12/30, 20/42, 30/56, 42/72, 56/90,............

Common difference is not same, so it is not A.P

Common ratio is not same, so it is not G.P

It is not H.P

Hence the answer is none of them.

(iii) 4 (1/2)n

Solution :

Let tn  =  4 (1/2)n

 n  =  1t1  =  4 (1/2)n  =  4(1/2)1=  2 n  =  2t2  =  4 (1/2)n  =  4(1/2)2=  1 n  =  3t3  =  4 (1/2)n  =  4(1/2)3=  1/2 n  =  4t4  =  4 (1/2)4  =  1/4 n  =  5t5  =  4 (1/2)5  =  1/8 n  =  6t6  =  4 (1/2)6  =  1/16

First 6 terms of the sequence are,

2, 1, 1/2, 1/4, 1/8, 1/16,....................

The common ratio is same, so it is G.P

(iv) (−1)n/n

Solution :

 n  =  1t1  =  -1/1=  -1 n  =  2t2  =  1/2 n  = 3t2  =  -1/3 n  = 4t4  =  1/4 n  =  5t5  =  -1/5 n  =  6t6  =  1/6

First 6 terms of the sequence are,

-1, 1/2, -1/3, 1/4, -1/5, 1/6, .................

Common difference is not same, so it is not A.P

Common ratio is not same, so it is not G.P

It is not H.P

Hence the answer is none of them.

(v) (2n+3) / (3n+4)

Solution :

Let tn  =  (2n+3) / (3n+4)

 n  =  1t1 = 5/7 n  =  2  t2 = 7/10 n  =  3  t3 = 9/13 n  =  4  t4 = 11/16 n  =  5t5  =  13/19 n  =  6t6  =  15/22

First 6 terms of the sequence are,

5/7, 7/10, 9/13, 11/16, 13/19, 15/22,....................

Hence the answer is none of these.

(vi) 2018

Solution :

The answer is none of these.

(vii) (3n−2)/(3n−1)

Solution :

Let tn  =  (3n−2)/(3n−1)

 n  =  1t1 = 1/1 = 1 n  =  2  t2 = 4/3 n  =  3  t3 = 7/9 n  =  4  t4 = 10/27 n  =  5t5  =  13/81 n  =  6t6  =  16/243

First 6 terms of the sequence are,

1, 4/3, 7/9, 10/27, 13/81, 16/243, .............

Hence the answer is arithmetico-geometric progression.

After having gone through the stuff given above, we hope that the students would have understood "Arithmetic Geometric and Harmonic Progression"

Apart from the stuff given in this section, if you need any other stuff in math, please use our google custom search here.

Kindly mail your feedback to v4formath@gmail.com

## Recent Articles

1. ### SAT Math Videos

May 22, 24 06:32 AM

SAT Math Videos (Part 1 - No Calculator)

2. ### Simplifying Algebraic Expressions with Fractional Coefficients

May 17, 24 08:12 AM

Simplifying Algebraic Expressions with Fractional Coefficients