# ARITHMETIC AND GEOMETRIC SEQUENCES WORD PROBLEMS

Problem 1 :

The product of three increasing numbers in GP is 5832. If we add 6 to the second number and 9 to the third number, then resulting numbers form an AP. Find the numbers in GP.

Solution :

Let three consecutive terms be a/r, a and ar

Product of three terms  = 5832

(a/r) ⋅ a ⋅ ar  =  5832

a3  =  5832

a3  =  183

a  =  18

Then a/r, a + 6, ar + 9 are in A.P

2b  =  a + c

2 (a + 6)  =  (a/r) + (ar + 9)  ------(1)

By applying the value of a, we get

2 (18 + 6)  =  (18/r) + (18r + 9)

48r  =  18 + r(18r + 9)

48r  =  18 + 18r2 + 9r

18r2 + 9r - 48r + 18  =  0

18r2 - 39r + 18  =  0

Divide by 3, we get

6r2 - 13r + 6  =  0

6r2 -9r - 4r + 6  =  0

3r (2r - 3) -2 (2r - 3)  =  0

3r - 2 = 0                   2r - 3  =  0

r  =  2/3                       r  =  3/2

 a/r  =  18/(2/3)  =  27 a  =  18 ar  =  18 ⋅ (2/3)  =  12 a/r  =  18/(3/2)  =  12 a  =  18 ar  =  18 ⋅ (3/2)  =  12

So, the required terms are 27, 18, 12.

Problem 2 :

Write the nth term of the sequence

3/1222, 5/2232, 7/3242 , . . . as a difference of two terms.

Solution :

By observing the denominator, we have the form n2 and (n+1)2

tn  =  (1/n2) - [1/(n + 1)2]

 If n = 1tn  =  (1/12) - [1/(1 + 1)2] =  (1/1) - (1/4)=  (4 - 1)/1⋅4=  3/12⋅ 22 If n = 2tn  =  (1/22) - [1/(2 + 1)2] =  (1/4) - (1/9)=  (9 - 4)/22⋅ 32=  5/22⋅ 32

So, the required nth term is tn  =  (1/n2) - [1/(n + 1)2]

Apart from the stuff given above, if you need any other stuff in math, please use our google custom search here.

Kindly mail your feedback to v4formath@gmail.com

## Recent Articles

1. ### SAT Math Videos

May 22, 24 06:32 AM

SAT Math Videos (Part 1 - No Calculator)

2. ### Simplifying Algebraic Expressions with Fractional Coefficients

May 17, 24 08:12 AM

Simplifying Algebraic Expressions with Fractional Coefficients