AREA OF RHOMBUS

The area of a rhombus is equal to one half the product of the lengths of the diagonals.  

Let d1 and d2 be the lengths of diagonals of a rhombus. 

Problem 1 :

If the lengths of the diagonals of a rhombus are  16 cm and 30 cm, find its area.

Solution :

Formula for area of a rhombus :

 1/2 ⋅ (d1d2)

Substitute 16 for d1 and 30 for d2.

=   1/2 ⋅ (16 ⋅ 30)

=   8 ⋅ 30

=  240 cm2

So, area of the rhombus is 240 square cm.

Problem 2 :

Find the area of the rhombus shown below. 

Solution :

In the rhombus shown above,

d1  =  5 + 5  =  10 units

d2  =  4 + 4  =  8 units

Formula for area of a rhombus :

=   1/2 ⋅ (d1d2)

Substitute 10 for d1 and 8 for d2.

=   1/2 ⋅ (10 ⋅ 8)

=   5 ⋅ 8

=  40

So, area of the rhombus is 40 square units.

Problem 3 :

Area of a rhombus is 192 square cm. If the length of one of the diagonals is 16 cm, find the length of the other diagonal. 

Solution :

Area of the rhombus  =  192 cm2

1/2 ⋅ (d1d2)  =  192

Substitute 16 for d1.

1/2 ⋅ (16 ⋅ d2)  =  192

8 ⋅ d2  =  192

Divide each side by 8.

d2  =  24 cm

So, the length of the other diagonal is 24 cm. 

Problem 4 :

Area of a rhombus is 120 square units. If the lengths of the diagonals are 10 units and (7x + 3) units, then find the value of x.  

Solution :

Area of the rhombus  =  120 cm2

1/2 ⋅ (d1d2)  =  120

Substitute 10 for d1 and (7x + 3) for d2

1/2 ⋅ [10(7x + 3)]  =  120

5(7x + 3)  =  120

Divide each side by 5. 

7x + 3  =  24

Subtract 3 from each side. 

7x  =  21

Divide each side by 7.

x  =  3

Problem 5 :

Area of the rhombus shown below is 48 square inches. What is the value of x ? 

Solution :

In the rhombus shown above,

d1  =  8 + 8  =  16 units

d2  =  x + x  =  2x units

Given : Area of the rhombus is 48 square inches. 

Then, 

1/2 ⋅ (d1d2)  =  48

Substitute 16 for d1 and 2x for d2.

1/2  (16 ⋅ 2x)  =  48

8 ⋅ 2x  =  48

16x  =  48

Divide each side by 16.

x  =  3

Problem 6 :

Find the area of the rhombus shown below. 

Solution :

Measure the lengths of the diagonals AC and BD.  

The lengths of the diagonals are  4 units and 2 units. 

Formula for area of a rhombus :

=   1/2 ⋅ (d1d2)

Substitute 4 for d1 and 2 for d2.

=   1/2 ⋅ (4 ⋅ 2)

=   2 ⋅ 2

=  4 

So, area of the rhombus is 4 square units.

Problem 7 :

Find the area of the rhombus having each side equal to 17 cm and one of its diagonals equal to 16 cm.

Solution :

Let A, B, C and D be the vertices of the rhombus. 

The diagonals of a rhombus will be perpendicular and they will bisect each other. 

Then, we have

In the above rhombus, consider the right angled triangle BDE. 

By Pythagorean Theorem, 

BD2  =  BE2 + DE2

172  =  BE2 + 82

289  =  BE2 + 64

Subtract 64 from each side. 

225  =  BE2

152  =  BE2

15  =  BE

Then, 

EC  =  15

Length of the diagonal BC : 

BC  =  BE + EC

BC  =  15 + 15

BC  =  30 units

So, the lengths of the diagonals are 16 units and 30 units. 

Formula for area of a rhombus :

=   1/2 ⋅ (d1d2)

Substitute 16 for d1 and 30 for d2.

=   1/2 ⋅ (16 ⋅ 30)

=   8 ⋅ 30

=  240 

So, area of the rhombus is 240 square units.

Problem 8 :

One of the diagonals of a rhombus is double and other diagonal. Its area is 25 sq.cm. The sum of the diagonal is :

a)  10 cm    b)  12 cm    c)  15 cm    d)  16 cm

Solution :

Let d1 and d2 be the length of diagonals.

d1 = 2d2

Area of rhombus =  1/2 ⋅ (d1d2)

25 = (1/2) ⋅ (2d2d2)

25 = d22

d2√25

d2 = 5 cm

d1 = 2(5) ==> 10 cm

Sum of the diagonal = d1 +  d2

= 10 + 5

= 15 cm

So, the sum of the diagonals is 15 cm.

Problem 9 :

The perimeter of the rhombus is 56 m, and its height is 5 m. Its area is 

a)  64 sq.m    b)  70 sq.m    c)  78 sq.m    d)  84 sq.m

Solution :

area-of-rhombus-qu1

Perimeter of rhombus = 56 m

4a = 56

a = 56/4

a = 14 m

Area of rhombus = base x height

= 14 x 5

= 70 sq.m

So, area of the rhombus is 70 sq.m

Problem 10 :

The length of one diagonal of a rhombus is 80% of the other diagonal. The area of the rhombus is how many times the square of the length of other diagonal ?

a)  4/5    b)  2/5    c)  3/4    d)  1/4

Solution :

Let d1 and d2 be the length of diagonals.

d1 = 0.80d2

Area of rhombus = 1/2 ⋅ (d1d2)

= 1/2 ⋅ (0.80d2d2)

= 0.40 d22

= (40/100) d22

= (2/5) d22

So, option b is correct.

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. Digital SAT Math Problems and Solutions (Part - 154)

    Apr 30, 25 11:12 PM

    digitalsatmath187.png
    Digital SAT Math Problems and Solutions (Part - 154)

    Read More

  2. Digital SAT Math Problems and Solutions (Part - 153)

    Apr 29, 25 12:18 PM

    digitalsatmath185.png
    Digital SAT Math Problems and Solutions (Part - 153)

    Read More

  3. Digital SAT Math Problems and Solutions (Part - 152)

    Apr 28, 25 11:54 AM

    Digital SAT Math Problems and Solutions (Part - 152)

    Read More