## AREA AND PERIMETER OF QUADRANT

Here we are going to see the how to find area and perimeter of quadrant.

A quadrant is exactly one fourth of any circle. Area of quarter circle = (1/4) Π r²

Perimeter of a quadrant = ((Π/2) + 2)r

It has 90 degree at the center.

## Examples

Example 1 :

Solution :

Here r = 7 cm and Π = 22/7

=  (1/4)  (22/7)  (7)2

=  (1/4)  (22/7)  7  7

=  (1/4)  22  7

=  (1/2)  11 ⋅ 7

=  11  3.5  =  38.5 cm2

Example 2 :

Solution :

Here r = 3.5 cm and Π = 22/7

=  (1/4)  (22/7)  (3.5)²

=  (1/4)  (22/7)  3.5  3.5

=  (1/4)  22  0.5  3.5

=  (1/2)  11  0.5  3.5

=  10.5  0.5  3.5

=  18.375 cm2

Example 3 :

Solution :

Here r = 3.5 cm and Π = 22/7

=  (1/4) x (22/7) x (64)2

=  (1/4) x (22/7) x 64 x 64

=  (22/7) x 16 x 64

=  (22 x 16 x 64)/7

=  22528/7

=  3218.28 cm2

Example 4 :

Solution :

Here r = 7 cm and  Π = 22/7

Circumference of quadrant  =  [(Π/2) + 2]r

=  [(22/14) + 2] (7)

=  [(11/7) + 2] 7

=  ((11 + 14)/7) 7

=  25 cm

Example 5 :

Solution :

Here r = 4.2 cm and  Π = 22/7

=  [(22/14) + 2] (4.2)

=  [(11/7) + 2] 4.2

=  ((11 + 14)/7) 4.2

=  (25/7) ⋅ 4.2

=  25(0.6)

=  15 cm

Example 6 :

Solution :

Here r = 14 cm and  Π = 22/7

=  [(22/14) + 2] (14)

=  [(11/7) + 2] 14

=  ((11 + 14)/7) 14

=  (25/7) ⋅ 14

=  25(2)

=  50 cm Apart from the stuff given above, if you need any other stuff, please use our google custom search here. Kindly mail your feedback to v4formath@gmail.com

## Recent Articles 1. ### Solving Word Problems Using Section Formula

Aug 12, 22 02:47 AM

Solving Word Problems Using Section Formula

2. ### Solving for a Specific Variable Worksheet

Aug 12, 22 02:41 AM

Solving for a Specific Variable Worksheet