ARC LENGTH OF A SECTOR

Formula to find the arc length of a sector is 

Example 1 :

Find the length of the arc that is bolded. (Take ∏    3.14 and round your answer to one decimal place, if necessary)

Solution :

The formula to find the arc length is

=  (Arc Measure / 360°⋅ 2Π r

Plug r  =  8, Arc Measure  =  135° and Π    3.14

  (135° / 360°⋅ 2 ⋅ 3.14  8

  18.9

So, the length of the arc is about 18.9 yd.

Example 2 :

Find the length of the arc that is bolded. (Take ∏    3.14 and round your answer to one decimal place, if necessary)

Solution :

The formula to find the arc length is

=  (Arc Measure / 360°⋅ 2Π r

Plug r  =  8, Arc Measure  =  315° and Π    3.14

  (315° / 360°⋅ 2 ⋅ 3.14  8

  44

So, the length of the arc is about 44 cm.

Example 3 :

Find the length of the arc highlighted in red color. (Take ∏    3.14 and round your answer to one decimal place, if necessary)

Solution :

Given : Diameter is 4 inches.

Then, the radius is

=  Diameter / 2

=  4 / 2

=  2 inches

The formula to find the arc length is

=  (Arc Measure / 360°⋅ 2Π r

Plug r  =  2, Arc Measure  =  80° and Π    3.14

  (80° / 360°⋅ 2 ⋅ 3.14  2

  2.8

So, the length of the arc is about 2.8 inches.

Example 4 :

In the diagram given below, if QRS is a central angle and m∠QRS = 81°, m∠SRT = 115°, and radius is 5 cm, then find the length of the arc QST. (Take ∏    3.14 and round your answer to one decimal place, if necessary)

Solution :

To find the length of the arc QST, first we have to find the arc measure QST or the central angle m∠QRT. 

m∠QRT  =  m∠QRS + m∠SRT

m∠QRT  =  81° + 115°

m∠QRT  =  196°

The formula to find the arc length is

=  (Central Angle / 360°⋅ 2Π r

Plug r  =  5, Central Angle  =  196° and Π    3.14

  (196° / 360°⋅ 2 ⋅ 3.14  5

  17.1

So, the length of the arc is about 17.1 cm.

Example 5 :

If m∠LMN = 19° and radius is 15 inches, then find the length of arc LN. (Take ∏    3.14 and round your answer to one decimal place, if necessary)

Solution :

To find the length of the arc LN, first we have to find the arc measure LN

By Inscribed Angle Theorem, we have

1/2 ⋅ Arc Measure  =  m∠LMN

Multiply both sides by 2. 

Arc Measure  =  ⋅ m∠LMN

Arc Measure  =  ⋅ 19°

Arc Measure  =  38°

The formula to find the arc length is

=  (Arc Measure / 360°⋅ 2Π r

Plug r  =  15, Arc Measure  =  38° and Π    3.14

  (38° / 360°⋅ 2 ⋅ 3.14  15

  9.9

So, the length of the arc is about 9.9 inches.

Example 6 :

In a circle, if the arc length of Arc AB is 18 cm and the measure of Arc AB is 39°, then find the radius of the circle. (Take ∏    3.14 and round your answer to one decimal place, if necessary) 

Solution :

Given : The arc length of Arc AB is 18 cm.

So, we have

(Arc Measure / 360°⋅ 2Π r  =  18

Plug Arc Measure  =  39° and Π    3.14

(39° / 360°⋅ 2 ⋅ 3.14  r  ≈  18  

(39° / 360°⋅ 2 ⋅ 3.14  r  ≈  18

0.1083 ⋅ 2 ⋅ 3.14  r  ≈  18

0.68  r  ≈  18

Divide both sides by 0.68. 

r  ≈  18 / 0.68

r  ≈  26.5

So, the radius of the circle is about 26.5 cm.

Example 7 :

In a circle, if the arc length of Arc AB is 19 inches and the radius is 29 inches, then find the measure of arc AB. (Take ∏    3.14 and round your answer to one decimal place, if necessary) 

Solution :

Given : The arc length of Arc AB is 19 inches.

So, we have

(Arc Measure / 360°⋅ 2Π r  =  19

Plug r  =  29 and Π    3.14

(Arc Measure / 360°⋅ 2 ⋅ 3.14  29  ≈  19 

(Arc Measure / 360°⋅ 182.12  ≈  19

(Arc Measure / 360°⋅ 182.12  ≈  19

Multiply both sides by 360° / 182.12

Arc Measure  ≈  19 ⋅ 360° / 182.12

Arc Measure  ≈  19 ⋅ 360° / 182.12

Arc Measure  ≈  37.6°

So, the measure of arc AB is about 37.6°.

Example 8 :

Find the length of the arc highlighted in red color. (Take ∏    3.14 and round your answer to one decimal place, if necessary)

Solution :

From the given diagram, we have

m∠MCN + Measure of arc MON  =  360°

Plug m∠MCN  =  88°

88° + Measure of arc MON  =  360°

Subtract 88° from both sides. 

Measure of arc MON  =  272°

Given : Diameter is 4 inches.

Then, the radius is

=  Diameter / 2

=  10 / 2

=  5 ft

The formula to find the arc length is

=  (Arc Measure / 360°⋅ 2Π r

Plug r  =  5, Arc Measure  =  272° and Π    3.14

  (272° / 360°⋅ 2 ⋅ 3.14  5

  23.7 ft

So, the length of the arc is about 23.7 ft.

Apart from the stuff given in this section, if you need any other stuff in math, please use our google custom search here. 

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. Angular Speed and Linear Speed

    Dec 07, 22 05:15 AM

    Angular Speed and Linear Speed - Concepts - Formulas - Examples

    Read More

  2. Linear Speed Formula

    Dec 07, 22 05:13 AM

    Linear Speed Formula and Examples

    Read More

  3. Angular Speed and Linear Speed Worksheet

    Dec 07, 22 05:08 AM

    Angular Speed and Linear Speed Worksheet

    Read More