ARC AND ANGLE RELATIONSHIPS IN CIRCLES WORKSHEET

Problem 1 :

Find m∠AED. 

Problem 2 :

Find m∠YWX. 

Problem 3 :

Find m∠arc CDE. 

Problem 4 :

Find m∠DEG. 

Problem 5 :

Find m∠arc KNM. 

Problem 6 :

Find m∠KLM. 

Problem 7 :

Find m∠BCD. 

Problem 8 :

Find m∠KLM. 

Problem 9 :

Find m∠CDE. 

Problem 10 :

Find m∠arc MK. 

Answers

Problem 1 :

Find m∠AED. 

Answer :

m∠AED  =  1/2 ⋅ (m∠arc AD + m∠arc BC)

Substitute. 

m∠AED  =  1/2 ⋅ (45° + 109°)

m∠AED  =  1/2 ⋅ 154°

m∠AED  =  77°

Problem 2 : 

Find m∠YWX. 

Answer :

Find m∠VWY : 

 m∠VWY  =  1/2 ⋅ (m∠arc VY + m∠arc XZ)

m∠VWY  =  1/2 ⋅ (43° + 81°)

m∠VWY  =  1/2 ⋅ 124°

m∠VWY  =  62°

Find m∠YWX :

m∠VWY and m∠YWX are linear pair. 

Then, 

m∠VWY + m∠YWX  =  180°

Substitute m∠VWY  =  62°. 

62° m∠YWX  =  180°

Subtract 62° from each side. 

m∠YWX  =  118°

Problem 3 : 

Find m∠arc CDE. 

Answer :

1/2 ⋅ (m∠arc GF + m∠arc CDE)  =  m∠CHE

Substitute. 

1/2 ⋅ (73° + m∠arc CDE)  =  128°

Multiply each side by 2.

73° + m∠arc CDE  =  256°

Subtract 73° from each side. 

m∠arc CDE  =  183°

Problem 4 : 

Find m∠DEG. 

Answer :

m∠DEG  =  1/2 ⋅ m∠arc EHG

Substitute. 

m∠DEG  =  1/2 ⋅ 308°

m∠DEG  =  154°

Problem 5 : 

Find m∠arc KNM. 

Answer :

Find m∠arc KM :

1/2 ⋅ m∠arc KM  =  m∠JKM

Substitute. 

1/2 ⋅ m∠arc KM  =  23°

Multiply each side by 2. 

m∠arc KM  =  46°

In the circle above,

m∠arc KM + m∠arc KNM  =  360°

Substitute. 

46° + m∠arc KNM  =  360°

Subtract 46° from each side.

m∠arc KNM  =  314°

Problem 6 : 

Find m∠KLM. 

Answer :

m∠KLM  =  1/2 ⋅ (m∠arc JN - m∠arc KM)

Substitute. 

m∠KLM  =  1/2 ⋅ (140° - 66°)

m∠KLM  =  1/2 ⋅ 74°

m∠KLM  =  37°

Problem 7 : 

Find m∠BCD. 

Answer :

In the circle above,

m∠arc BD + marc DE + m∠arc EA  =  90°

Substitute. 

m∠arc BD + 94° + 67°  =  180°

m∠arc BD + 161°  =  180°

Subtract 161° from each side. 

m∠arc BD  =  19°

Finding m∠BCD : 

  m∠BCD  =  1/2 ⋅ (m∠arc AE - m∠arc BD)

Substitute. 

m∠BCD  =  1/2 ⋅ (67° - 19°)

m∠BCD  =  1/2 ⋅ 48°

m∠BCD  =  24°

Problem 8 : 

Find m∠KLM. 

Answer :

m∠KLM  =  1/2 ⋅ (m∠arc KN - m∠arc KM)

Substitute. 

m∠KLM  =  1/2 ⋅ (135° - 33°)

m∠KLM  =  1/2 ⋅ 102°

m∠KLM  =  51°

Problem 9 : 

Find m∠CDE. 

Answer :

In the circle above,

m∠arc CFE + marc CE  =  360°

Substitute. 

m∠arc CFE + 106°  =  360°

Substitute 106° from each side. 

m∠arc CFE  =  254°

Finding m∠CDE : 

m∠CDE  =  1/2 ⋅ (m∠arc CFE - m∠arc CE)

Substitute. 

m∠CDE  =  1/2 ⋅ (254° - 106°)

m∠KLM  =  1/2 ⋅ 148°

m∠KLM  =  74°

Problem 10 :

Find m∠arc MK. 

Answer :

1/2 ⋅ (m∠arc NK - m∠arc MK)  =  m∠MLK

Substitute. 

1/2 ⋅ (160° - m∠arc MK)  =  56°

Multiply each side by 2. 

160° - m∠arc MK  =  112°

Subtract 160° from each side.  

- m∠arc MK  =  - 48°

Multiply each side by -1. 

m∠arc MK  =  48°

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. Quadratic Equation Word Problems Worksheet with Answers

    Oct 07, 22 12:25 PM

    Quadratic Equation Word Problems Worksheet with Answers

    Read More

  2. Problems on Quadratic Equations

    Oct 07, 22 12:20 PM

    Problems on Quadratic Equations

    Read More

  3. SAT Math Practice Worksheets

    Oct 07, 22 09:38 AM

    SAT Math Practice Worksheets - Topic wise worksheet with step by step explanation for each question

    Read More