# APPLICATION PROBLEMS IN INTEGRAL CALCULUS

## About "Application Problems in Integral Calculus"

Application Problems in Integral Calculus :

Here we are going to see some application problems in integration.

Here we discuss how integration is used to find the position and velocity of an object, given its acceleration and similar types of problems. Mathematically, this means that, starting with the derivative of a function, we must find the original function.

Many common word which indicate derivative such as rate, growth, decay, marginal, change, varies, increase, decrease etc.

Let us look in to some example problems to understand the concept.

## Application Problems in Integral Calculus - Examples

Question 1 :

A ball is thrown vertically upward from the ground with an initial velocity of 39.2 m/sec. If the only force considered is that attributed to the acceleration due to gravity, find

(i) how long will it take for the ball to strike the ground?

(ii) the speed with which will it strike the ground? and

(iii) how high the ball will rise?

Solution :

Given that :

Initial velocity = 39.2 m/sec

By differentiating "distance" we get "velocity", by differentiating "velocity" we get "acceleration".

By doing the process vice versa, we get "velocity" by integrating "acceleration", integrating "velocity" we get "distance".

When a ball is thrown vertically upward, it reaches the maximum height then it will strike the ground.

Acceleration  =  9.8 m/sec2

When we throw a ball in upward direction, it moves against the gravity, so we have to consider the acceleration as -9.8.

Velocity  = ∫a dt

a = -9.8

velocity  =  ∫(-9.8) dt

v(t) =  -9.8 t + c1 ------(1)

When an object reaches its maximum height, its velocity will become zero at the point.

Initial velocity = 39.2 at t = 0

39.2 =  -9.8 (0) + c1

c =  39.2

v(t) =  -9.8 t + 39.2

By applying v(t)  =  0, we may find the time taken by the ball to reach its maximum height.

0  =  -9.8 t + 39.2

-9.8 t  =  -39.2  ==> t  =  39.2/9.8  =  4

Hence it takes 4 seconds to reach maximum height.

Distance  =  ∫ v(t) =  ∫(-9.8 t + 39.2) dt

Distance  =  -9.8t2/2 + 39.2 t + c2

D(t)  =  -4.9 t2 + 39.2 t + c2

When t = 0, D(t)  =  0, then c =  0

Hence D(t)  =  -4.9 t2 + 39.2 t

(i) how long will it take for the ball to strike the ground?

Time taken by the ball to strike the ground  =  8 seconds

[It takes 4 seconds to reach its maximum height and 4 seconds to strike the ground.]

(ii) the speed with which will it strike the ground?

v(t) =  -9.8 t + 39.2

when t = 8

v(8) =  -9.8 (8) + 39.2

=  39.2 m /sec

(iii) how high the ball will rise?

When t = 4

D(4)  =  -4.9 (4)2 + 39.2 (4)

=  -4.9(16) + 156.8

=  -78.4 + 156.8

=  78.4 m

Hence the maximum height reached by the ball is 78.4 m.

Question 2 :

A wound is healing in such a way that t days since Sunday the area of the wound has been decreasing at a rate of -3/(t+2)cm2 per day. If on Monday the area of the wound was 2cm2

(i) What was the area of the wound on Sunday?

(ii) What is the anticipated area of the wound on Thursday if it continues to heal at the same rate?

Solution :

Let "A" be the are of wound and "t" be the days

By integrating the wound on Sunday, we get the area of wound on Monday.

Rate of change (dA/dt)  =  -3/(t+2)cm2/ per day

dA  =  -3 (t+2)-2 dt

A  =  3 (t+2)-1 + c

A  =  3/(t+2) + c    -----(1)

When A = 2, t = 1

2  =  3/(1+2) + c

2  =  1  + c

c = 1

Applying c = 1 in (1)

A  =  3/(t+2) + 1

(i) What was the area of the wound on Sunday?

Since it is starting day t = 0

A  =  (3/(0+2)) + 1

A  =  (3/2) + 1

A = 2.5 cm2

(ii) What is the anticipated area of the wound on Thursday if it continues to heal at the same rate?

When Sunday = 0, then Thursday  =  4

A  =  (3/(4+2)) + 1

A  =  (3/6) + 1

A = 1.5 cm2 After having gone through the stuff given above, we hope that the students would have understood, "Application Problems in Integral Calculus"

Apart from the stuff given in "Application Problems in Integral Calculus", if you need any other stuff in math, please use our google custom search here.

If you have any feedback about our math content, please mail us :

v4formath@gmail.com

You can also visit the following web pages on different stuff in math.

WORD PROBLEMS

Word problems on simple equations

Word problems on linear equations

Algebra word problems

Word problems on trains

Area and perimeter word problems

Word problems on direct variation and inverse variation

Word problems on unit price

Word problems on unit rate

Word problems on comparing rates

Converting customary units word problems

Converting metric units word problems

Word problems on simple interest

Word problems on compound interest

Word problems on types of angles

Complementary and supplementary angles word problems

Double facts word problems

Trigonometry word problems

Percentage word problems

Profit and loss word problems

Markup and markdown word problems

Decimal word problems

Word problems on fractions

Word problems on mixed fractrions

One step equation word problems

Linear inequalities word problems

Ratio and proportion word problems

Time and work word problems

Word problems on sets and venn diagrams

Word problems on ages

Pythagorean theorem word problems

Percent of a number word problems

Word problems on constant speed

Word problems on average speed

Word problems on sum of the angles of a triangle is 180 degree

OTHER TOPICS

Profit and loss shortcuts

Percentage shortcuts

Times table shortcuts

Time, speed and distance shortcuts

Ratio and proportion shortcuts

Domain and range of rational functions

Domain and range of rational functions with holes

Graphing rational functions

Graphing rational functions with holes

Converting repeating decimals in to fractions

Decimal representation of rational numbers

Finding square root using long division

L.C.M method to solve time and work problems

Translating the word problems in to algebraic expressions

Remainder when 2 power 256 is divided by 17

Remainder when 17 power 23 is divided by 16

Sum of all three digit numbers divisible by 6

Sum of all three digit numbers divisible by 7

Sum of all three digit numbers divisible by 8

Sum of all three digit numbers formed using 1, 3, 4

Sum of all three four digit numbers formed with non zero digits

Sum of all three four digit numbers formed using 0, 1, 2, 3

Sum of all three four digit numbers formed using 1, 2, 5, 6

Featured Categories

Math Word Problems

SAT Math Worksheet

P-SAT Preparation

Math Calculators

Quantitative Aptitude

Transformations

Algebraic Identities

Trig. Identities

SOHCAHTOA

Multiplication Tricks

PEMDAS Rule

Types of Angles

Aptitude Test 