ALGEBRAIC REPRESENTATIONS OF ROTATIONS

Subscribe to our ▶️ YouTube channel 🔴 for the latest videos, updates, and tips.

To rotate a figure in the coordinate plane, rotate each of its vertices. Then connect the vertices to form the image.

We can use the rules shown in the table for changing the signs of the coordinates after a reflection about the origin.

Example 1 :

The triangle PQR has the following vertices P(0, 0), Q(-2, 3) and R(2,3). Rotate the triangle PQR 90° clockwise about the origin.

Solution :

Step 1 :

Trace triangle PQR and the x- and y-axes onto a piece of paper.

Step 2 :

Let P', Q' and R' be the vertices of the rotated figure.

Since the triangle is rotated 90° clockwise about the origin, the rule is

(x, y) ----> (y, -x)

Step 3 :

P(0, 0) ----> P'(0, 0)

Q(-2, 3) ----> Q'(3, 2)

R(2, 3) ----> R'(3, -2)

Step 4 :

Sketch the image P'Q'R' using the points P'(0, 0), Q'(3, 2) and  Z'(3, -2).

Example 2 :

The triangle XYZ has the following vertices X(0, 0), Y(2, 0) and Z(2, 4). Rotate the triangle XYZ 90° counterclockwise about the origin.

Solution :

Step 1 :

Trace triangle XYZ and the x- and y-axes onto a piece of paper.

Step 2 :

Let X', Y' and Z' be the vertices of the rotated figure.

Since the triangle is rotated 90° counterclockwise about the origin, the rule is

(x, y) ----> (-y, x)

Step 3 :

X(0, 0) ----> X'(0, 0)

Y(2, 0) ----> Y'(0, 2)

Z(2, 4) ----> Z'(-4, 2)

Step 4 :

Sketch the image X'Y'Z' using the points X'(0, 0), Y'(0, 2) and  Z'(-4, 2).

Example 3 :

A quadrilateral has the following vertices A(0, 0), B(1, 2), C(4, 2) and D(3, 0). Rotate the quadrilateral 180° clockwise about the origin.

Solution :

Step 1 :

Trace the quadrilateral ABCD and the x- and y-axes onto a piece of paper.

Step 2 :

Let A', B', C' and D' be the vertices of the rotated figure.

Since the quadrilateral is rotated 180° clockwise about the origin, the rule is

(x, y) ----> (-x, -y)

Step 3 :

A(0, 0) ----> A'(0, 0)

B(1, 2) ----> B'(-1, -2)

C(4, 2) ----> C'(-4, -2)

D(3, 0) ----> D'(-3, 0)

Step 4 :

Sketch the image A'B'C'D' using the points A'(0, 0), B'(-1, -2), C(-4, -2) and  D'(-3, 0).

Example 4 :

The triangle XYZ has the following vertices X(0, 0), Y(2, 0) and Z(2, 4). Rotate the triangle XYZ 270° counterclockwise about the origin.

Solution :

Step 1 :

Trace triangle XYZ and the x- and y-axes onto a piece of paper.

Step 2 :

Let X", Y" and Z" be the vertices of the rotated figure.

Since the triangle is rotated 270° counterclockwise about the origin, the rule is

(x, y) ----> (y, -x)

Step 3 :

X(0, 0) ----> X"(0, 0)

Y(2, 0) ----> Y"(0, -2)

Z(2, 4) ----> Z"(4, -2)

Step 4 :

Sketch the image X"Y"Z" using the points X"(0, 0),  Y"(0, -2) and  Z"(4, -2).

You might like these

90-Degree Clockwise Rotation

90-Degree Counterclockwise Rotation

180-Degree Rotation about the Origin

270-Degree Clockwise Rotation

270-Degree Counterclockwise Rotation

Algebraic Representations of Rotation

Rotation Transformation

Rotation Transformation Matrix

Subscribe to our ▶️ YouTube channel 🔴 for the latest videos, updates, and tips.

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

About Us  |  Contact Us  |  Privacy Policy

©All rights reserved. onlinemath4all.com

onlinemath4all_official_badge1.png

Recent Articles

  1. Digital SAT Math Problems and Solutions (Part - 1)

    Feb 05, 26 09:37 AM

    digitalsatmath1.png
    Digital SAT Math Problems and Solutions (Part - 1)

    Read More

  2. AP Precalculus Problems and Solutions

    Feb 05, 26 06:41 AM

    precalculus.png
    AP Precalculus Problems and Solutions

    Read More

  3. SAT Math Preparation with Hard Questions

    Feb 05, 26 05:30 AM

    SAT Math Preparation with Hard Questions

    Read More