# ALGEBRA AND ANGLE MEASURES WORKSHEET

Problem 1 :

Find the values of x, y and z. Problem 2 :

Find the values of x and y. Problem 3 :

Using a 3rd parallel Line – Auxiliary Line, find the value of x. Problem 4 :

Find the values of x and y. Problem 5 :

Find the values of x, y and z. Problem 6 :

Find the values of x and y. Problem 7 :

Solve for x. Problem 8 :

Solve for x. Problem 9 :

If m∠ABD = (6x + 26)° and m∠ACD = (13x – 9)°, find the value of x. Problem 10 :

Solve for x.  2x°, 90° and x° together form a straight angle.

2x° + 90° + x°  =  180°

3x + 90  =  180

Subtract 90 from each side.

3x  =  90

Divide each side by 3.

x  =  30

x° and 2y° are alternate interior angles and they are equal.

2y°  =  x°

2y  =  x

Substitute x = 30.

2y  =  30

Divide each side by 2.

y  =  15

Therefore,

x  =  30  and  y  =  15

Mark a new angle a°. a° and (5y - 4)° form a linear pair.

a° + (5y - 4)°  =  180°

a° and 3y° are corresponding angles, then  a° = 3y°.

3y° + (5y - 4)°  =  180°

3y + 5y - 4  =  180

8y - 4  =  180

8y  =  184

Divide each side by 8.

y  =  23

3y° and (2x + 13)° are corresponding angles and they are equal.

(2x + 13)°  =  3

2x + 13  =  3y

Substitute y = 23.

2x + 13  =  3(23)

2x + 13  =  69

Subtract 13 from each side.

2x  =  56

Divide each side by 2.

x  =  28 In the figure above, a° and 62° are alternate interior angles and they are equal.

a°  =  62°

b° and 144° are interior angles on the same side of the transversal and they are supplementary.

b° + 144°  =  180°

Subtract 144° from each side.

b°  =  36°

In the above figure,

x  =  a + b

=  62 + 36

=  98

3x° and (5x - 20)° are alternate interior angles and they are equal.

3x°  =  (5x - 20)°

3x  =  5x - 20

Subtract 3x from each side.

0  =  2x - 20

20  =  2x

Divide each side by 2.

10  =  x

By Triangle Angle Sum Theorem,

(5x - 20)° + 2y° + 4y°  =  180°

5x - 20 + 2y + 4y  =  180

5x - 20 + 6y  =  180

Substitute x = 10.

5(10) - 20 + 6y  =  180

50 - 20 + 6y  =  180

30 + 6y  =  180

Subtract 30 from each side.

6y  =  150

Divide each side by 6.

y  =  25

Therefore,

x  =  10  and  y  =  25

2y° and 106° form a linear pair, they are supplementary.

2y° + 106°  =  180°

2y + 106  =  180

Subtract 106 from each side.

2y  =  74

Divide each side by 2.

y  =  37

x° and 2y° are corresponding angles, they are equal.

x°  =  2y°

x  =  2y

Substitute x = 37.

x  =  2(37)

x  =  74

Using Vertical angles Theorem, mark the angle x° In the figure above, (4z + 6)° and x° are consecutive interior angles, they are supplementary.

(4z + 6)° + x°  =  180°

4z + 6 + x  =  180

Substitute x = 74.

4z + 6 + 74  =  180

4z + 80  =  180

Subtract 80 from each side.

4z  =  100

Divide each side by 4.

z  =  25

Therefore,

x  =  74, y  =  37  and  z  =  25

Mark a new angle a°. (9x + 12)° and a° are consecutive interior angles, they are supplementary.

a° + 3x°  =  180°

By Vertical Angles Theorem, a° = (9x + 12)°.

(9x + 12)° + 3x°  =  180°

9x + 12 + 3x  =  180

12x + 12  =  180

Subtract 12 from each side.

12x  =  168

Divide each side by 12.

x  =  14

(4y - 10)° and 3x° form a linear pair, they are supplementary.

(4y - 10)° + 3x°  =  180°

4y - 10 + 3x  =  180

Substitute x = 14.

4y - 10 + 3(14)  =  180

4y - 10 + 42  =  180

4y + 32  =  180

Subtract 32 from each side.

4y  =  148

Divide each side by 4.

y  =  37

Therefore,

x  =  14  and  y  =  37

Since the inscribed angle ∠WXY intercepts the diameter, it is a right angle.

m∠WXY  =  90°

(13x - 1)°  =  90°

13x - 1  =  90

13x  =  91

Divide each side by 13.

x  =  7

In the figure above,

m∠arc AC + 162° + 92°  =  360°

m∠arc AC + 254°  =  360°

Subtract 254° from each side.

m∠arc AC  =  106°

The measure of an inscribed angle is equal to half of the measure of its intercepted arc.

m∠ABC  =  (1/2) ⋅ m∠arc AC

(7x - 10)°  =  (1/2) ⋅ 106°

(7x - 10)°  =  53°

7x - 10  =  53

7x  =  63

Divide each side by 7.

x  =  9

In the figure above, two inscribed angles ∠ABD and ∠ACD intercept the same arc AD. Then, ∠ABD and ∠ACD are congruent.

m∠ABD  =  m∠ACD

(6x + 26)°  =  (13x - 9)°

6x + 26  =  13x - 9

Subtract 6x from each side.

26  =  7x - 9

35  =  7x

Divide each side by 7.

5  =  x

Since the quadrilateral STUV is inscribed in a circle, its opposite angles are supplementary.

m∠T + m∠V  =  180°

Substitute.

(62 - 5x)° + 133°  =  180°

62 - 5x + 133  =  180

195 - 5x  =  180

Subtract 195 from each side.

-5x  =  -15

Divide each side by -5.

x  =  3 Apart from the stuff given above, if you need any other stuff in math, please use our google custom search here.

If you have any feedback about our math content, please mail us :

v4formath@gmail.com

You can also visit the following web pages on different stuff in math.

WORD PROBLEMS

Word problems on simple equations

Word problems on linear equations

Algebra word problems

Word problems on trains

Area and perimeter word problems

Word problems on direct variation and inverse variation

Word problems on unit price

Word problems on unit rate

Word problems on comparing rates

Converting customary units word problems

Converting metric units word problems

Word problems on simple interest

Word problems on compound interest

Word problems on types of angles

Complementary and supplementary angles word problems

Double facts word problems

Trigonometry word problems

Percentage word problems

Profit and loss word problems

Markup and markdown word problems

Decimal word problems

Word problems on fractions

Word problems on mixed fractrions

One step equation word problems

Linear inequalities word problems

Ratio and proportion word problems

Time and work word problems

Word problems on sets and venn diagrams

Word problems on ages

Pythagorean theorem word problems

Percent of a number word problems

Word problems on constant speed

Word problems on average speed

Word problems on sum of the angles of a triangle is 180 degree

OTHER TOPICS

Profit and loss shortcuts

Percentage shortcuts

Times table shortcuts

Time, speed and distance shortcuts

Ratio and proportion shortcuts

Domain and range of rational functions

Domain and range of rational functions with holes

Graphing rational functions

Graphing rational functions with holes

Converting repeating decimals in to fractions

Decimal representation of rational numbers

Finding square root using long division

L.C.M method to solve time and work problems

Translating the word problems in to algebraic expressions

Remainder when 2 power 256 is divided by 17

Remainder when 17 power 23 is divided by 16

Sum of all three digit numbers divisible by 6

Sum of all three digit numbers divisible by 7

Sum of all three digit numbers divisible by 8

Sum of all three digit numbers formed using 1, 3, 4

Sum of all three four digit numbers formed with non zero digits

Sum of all three four digit numbers formed using 0, 1, 2, 3

Sum of all three four digit numbers formed using 1, 2, 5, 6

1. Click on the HTML link code below.

Featured Categories

Math Word Problems

SAT Math Worksheet

P-SAT Preparation

Math Calculators

Quantitative Aptitude

Transformations

Algebraic Identities

Trig. Identities

SOHCAHTOA

Multiplication Tricks

PEMDAS Rule

Types of Angles

Aptitude Test 