In this page adjoint of matrix questions 5 we are going to see solution of question 5 based on the topic ad-joint of matrix.
Question 5
Find the ad-joint of the following matrix
|
Solution:
minor of 4 |
|
|||||||||
adjoint of matrix questions 5 |
= [0-4] = (-4) = -4 | |||||||||
Cofactor of 4 |
= + (-4) = -4 |
minor of 2 |
|
|||||||||
= [0-8] = (-8) = -8 | ||||||||||
Cofactor of 2 |
= - (-8) = 8 |
minor of 1 |
|
|||||||||
= [6-6] = (0) = 0 | ||||||||||
Cofactor of 1 |
= + (0) = 0 |
minor of 6 |
|
|||||||||
= [0-1] = (-1) = -1 | ||||||||||
Cofactor of 6 |
= - (-1) = 1 |
minor of 3 |
|
|||||||||
= [0-2] = (-2) = -2 | ||||||||||
Cofactor of 3 |
= + (-2) = -2 |
minor of 4 |
|
|||||||||
= [4-4] = (0) = 0 | ||||||||||
Cofactor of 4 |
= - (0) = 0 |
minor of 2 |
|
|||||||||
= [8-3] = (5) = 5 | ||||||||||
Cofactor of 2 |
= + 5 |
minor of 1 |
|
|||||||||
= [16-6] = 10 | ||||||||||
Cofactor of 1 |
= -(10) = -10 |
minor of 0 |
|
|||||||||
= [12-12] = 0 | ||||||||||
Cofactor of 0 |
= +(0) = 0 |
co-factor matrix = |
|
||||||||||||||||||||
adjoint of matrix= |
|
Mar 24, 23 05:25 AM
Mar 24, 23 05:23 AM
Mar 22, 23 09:38 PM