In this page adjoint of matrix questions 4 we are going to see solution of question 4 based on the topic ad-joint of matrix.
Question 4
Find the ad-joint of the following matrix
|
Solution:
minor of 1 |
|
|||||||||
= [-9-(-8)] = (-9+8) = -1 | ||||||||||
Cofactor of 1 |
= + (-1) = -1 |
minor of 1 |
|
|||||||||
= [6-12] = (-6) = -6 | ||||||||||
Cofactor of 1 |
= - (-6) = 6 |
minor of -1 |
|
|||||||||
= [-4-(-9)] = (-4+9) = 5 | ||||||||||
Cofactor of -1 |
= +(5) = 5 |
minor of 2 |
|
|||||||||
= [3-2] = (1) = 1 | ||||||||||
Cofactor of 2 |
= - (1) = -1 |
minor of -3 |
|
|||||||||
= [3-(-3)] = (3+3) = 6 | ||||||||||
Cofactor of -3 |
= + (6) = 6 |
minor of 4 |
|
|||||||||
= [-2-3] = (-5) = -5 | ||||||||||
Cofactor of 4 |
= - (-5) = 5 |
minor of 3 |
|
|||||||||
= [4-3] = (1) = 1 | ||||||||||
Cofactor of 3 |
= +(1) = 1 |
minor of -2 |
|
|||||||||
= [4-(-2)] = (4+2) = 6 | ||||||||||
Cofactor of -2 |
= -(6) = -6 |
minor of 3 |
|
|||||||||
= [-3-2] = (-5) = -5 | ||||||||||
Cofactor of 3 |
= +(-5) = -5 |
co-factor matrix = |
|
||||||||||||||||||||
adjoint of matrix= |
|
Apr 01, 23 11:43 AM
Mar 31, 23 10:41 AM
Mar 31, 23 10:18 AM