In this page adjoint of matrix questions 3 we are going to see solution of question 1 based on the topic ad-joint of matrix.
Question 3
Find the ad-joint of the following matrix
|
Solution:
minor of 6 |
|
|||||||||
= [4-3] = (1) = 1 | ||||||||||
Cofactor of 6 |
= + (1) = 1 |
minor of 2 |
|
|||||||||
= [12-10] = (2) = 2 | ||||||||||
Cofactor of 2 |
= - (2) = -2 |
minor of 3 |
|
|||||||||
= [9-10] = (-1) = -1 | ||||||||||
Cofactor of 3 |
= + (-1) = -1 |
minor of 3 |
|
|||||||||
= [8-9] = (-1) = -1 | ||||||||||
Cofactor of 3 |
= - (-1) = 1 |
minor of 1 |
|
|||||||||
= [24-30] = (-6) = -6 | ||||||||||
Cofactor of 1 |
= + (-6) = -6 |
minor of 1 |
|
|||||||||
= [18-20] = (-2) = -2 | ||||||||||
Cofactor of 1 |
= - (-2) = 2 |
minor of 10 |
|
|||||||||
= [2-3] = (-1) = -1 | ||||||||||
Cofactor of 10 |
= + (-1) = -1 |
minor of 3 |
|
|||||||||
= [6-9] = (-3) = -3 | ||||||||||
Cofactor of 3 |
= - (-3) = 3 |
minor of 4 |
|
|||||||||
adjoint of matrix questions 3 |
= [6-6] = (0) = 0 | |||||||||
Cofactor of 4 |
= + (0) = 0 adjoint of matrix questions 3 |
co-factor matrix = |
|
||||||||||||||||||||
adjoint of matrix= |
|
Mar 26, 23 08:27 PM
Mar 26, 23 08:26 PM
Mar 24, 23 05:25 AM