In this page adjoint of matrix questions 2 we are going to see solution of question 1 based on the topic ad-joint of matrix.
Question 2
Find the ad-joint of the following matrix
|
Solution:
minor of 1 |
|
|||||||||
= [4-3] = 1 | ||||||||||
Cofactor of 1 |
= + (1) = 1 |
minor of 2 |
|
|||||||||
= [4-2] = 2 | ||||||||||
Cofactor of 2 |
= - (2) = -2 |
minor of 3 |
|
|||||||||
= [3-2] = 1 | ||||||||||
Cofactor of 3 |
= + (1) = 1 |
minor of 1 |
|
|||||||||
= [8-9] = -1 | ||||||||||
Cofactor of 1 |
= - (-1) = 1 |
minor of 1 |
|
|||||||||
= [4-6] = -2 | ||||||||||
Cofactor of 1 |
= + (-2) = -2 |
minor of 1 |
|
|||||||||
= [3-4] = -1 | ||||||||||
Cofactor of 1 |
= - (-1) = 1 |
minor of 2 |
|
|||||||||
= [2-3] = -1 | ||||||||||
Cofactor of 2 |
= + (-1) = -1 |
minor of 3 |
|
|||||||||
= [1-3] = -2 | ||||||||||
Cofactor of 3 |
= - (-2) = 2 |
minor of 4 |
|
|||||||||
adjoint of matrix questions 2 |
= [1-2] = -1 | |||||||||
Cofactor of 4 |
= + (-1) = -1 |
co-factor matrix = |
|
||||||||||||||||||||
adjoint of matrix = |
|
Mar 24, 23 05:25 AM
Mar 24, 23 05:23 AM
Mar 22, 23 09:38 PM