ADDING AND SUBTRACTING POLYNOMIALS

Subscribe to our ▶️ YouTube channel 🔴 for the latest videos, updates, and tips.

Adding Polynomials

Polynomials can be added in either vertical form or horizontal form. 

Consider the addition of two polynomials : 

(5x2 + 4x + 1) + (2x2 + 5x + 2)

In vertical form, align the like terms and add as shown below.   

In horizontal form, you use the Associative and Commutative Properties to regroup like terms together and combine them as shown below.  

Subtracting Polynomials

To subtract polynomials, remember that subtracting is the same as adding the opposite. To find the opposite of a polynomial, you must write the opposite of each term in the polynomial : 

-(3x2 - 5x + 8)  =  -3x2 + 5x - 8

Solved Problems

Problem 1 : 

Add :

(2y2 - y) + (y2 + 3y - 1)

Solution : 

=  (2y2 - y) + (y2 + 3y - 1)

Group like terms together. 

=  (2y2 + y2) + (-y + 3y) - 1

Combine like terms. 

=  3y2 + 2y - 1

Problem 2 : 

Add :

(20.2x2 + 6x + 5) + (1.7x2 - 3x - 8)

Solution : 

=  (20.2x2 + 6x + 5) + (1.7x2 - 3x - 8)

Group like terms together. 

=  (20.2x2 + 1.7x2) + (6x - 3x) + (5 - 8)

Combine like terms. 

=  21.9x2 + 3x - 3

Problem 3 : 

The length of a rectangle is represented by 5a + 4b, and its width is represented by 6a - 3b. Write a polynomial for the perimeter of the rectangle. 

Solution : 

Perimeter of the rectangle : 

=  2(length + width)

=  2[(5a + 4b) + (6a - 3b)]

Group like terms. 

=  2[(5a + 6a) + (4b - 3b)]

Combine like terms. 

=  2(11a + b)

Distributive Property. 

=  22a + 2b

Problem 4 : 

Subtract :

(2x2 + 6x) - (4x2)

Solution : 

=  (2x2 + 6x) - (4x2)

Rewrite subtraction as addition of the opposite. 

=  (2x2 + 6x) + (-4x2)

Group like terms together. 

=  (2x2 - 4x2) + 6x

Combine like terms. 

=  -2x2 + 6x

Problem 5 : 

Subtract :

(k4 - 2k) - (3k4 - 3k + 1)

Solution : 

=  (k4 - 2k) - (3k4 - 3k + 1)

Rewrite subtraction as addition of the opposite. 

=  (k4 - 2k) + (-3k4 + 3k - 1)

Group like terms together. 

=  (k4 - 3k4) + (-2k + 3k) - 1

Combine like terms. 

=  -3k4 + k - 1

Problem 6 : 

The measurements of a photo shown and its frame are shown in the diagram. Write a polynomial that represents the width of the photo.  

Solution : 

Width of the photo : 

=  (6w2 + 8) - 2(w2 - 3w + 2)

Distributive Property. 

=  6w2 + 8 - 2w2 + 6w - 4

Group like terms together. 

=  (6w2 - 2w2) + 6w + (8 - 4)

Combine like terms. 

=  4w2 + 6w + 4

Subscribe to our ▶️ YouTube channel 🔴 for the latest videos, updates, and tips.

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

About Us  |  Contact Us  |  Privacy Policy

©All rights reserved. onlinemath4all.com

onlinemath4all_official_badge1.png

Recent Articles

  1. US Common Core K-12 Curricum Algebra Solving Simple Equations

    Jan 07, 26 01:53 PM

    US Common Core K-12 Curricum Algebra Solving Simple Equations

    Read More

  2. 10 Hard SAT Math Questions (Part - 4)

    Jan 05, 26 06:56 PM

    digitalsatmath376.png
    10 Hard SAT Math Questions (Part - 4)

    Read More

  3. 10 Hard SAT Math Questions (Part - 3)

    Jan 05, 26 06:34 PM

    digitalsatmath378.png
    10 Hard SAT Math Questions (Part - 3)

    Read More