ADD SUBTRACT MULTIPLY AND DIVIDE POLYNOMIALS

Adding and subtracting polynomials is the same as the procedure used in combining like terms. When adding polynomials, simply drop the parenthesis and combine like terms. When subtracting polynomials, distribute the negative first, then combine like terms.

When two polynomials are multiplied, multiply each term in one polynomial by each term in other linear polynomial.

When a polynomial is divided by another polynomial, factor the polynomials in both numerator and denominator and cancel out the common factor.

Example 1 :

Add (6a + 3) and (4a - 2).

Solution :

= (6a + 3) + (4a - 2)

 = 6a + 3 + 4a - 2

= 10a + 1

Example 2 :

Add (5y2 + 8y + 3) and (4y2 - 5y - 2).

Solution :

(5y2 + 8y + 3) + (4y2 - 5y - 2)

5y2 + 8y + 3 +  4y2 - 5y - 2

= 9y2 + 3y + 1

Example 3 :

Subtract (6a - 5) from (-8a + 9).

Solution :

= (-8a + 9) - (6a - 5)

= -8a + 9 - 6a + 5

= -14a + 14

Example 4 :

Subtract (2x2 + 3x - 5) from (5x2 - 4x - 5).

Solution :

= (5x2 - 4x - 5) - (2x2 + 3x - 5)

= 5x2 - 4x - 5 - 2x2 - 3x + 5

= 3x2 - 7x

Example 5 :

Multiply (3x - 7) and (7x - 3).

Solution :

= (3x - 7)(7x - 3)

= 21x2 - 9x - 49x + 21

= 21x2 - 58x + 21

Example 6 :

Multiply (3x2 - 5) and (2x + 3).

Solution :

= (3x2 - 5)(2x + 3)

= 3x2(2x) + 3x2(3) - 5(2x) - 5(3)

= 6x3 + 9x2 - 10x - 15

Example 7 :

Multiply (p2 + 5p + 2) and (p2 + 5p - 2).

Solution :

= (p2 + 5p + 2) and (p2 + 5p - 2)

Let x = p2 + 5q.

= (x + 2)(x - 2)

Using Algebraic Identity a2 - b2 = (a + b)(a - b),

= x2 - 22

= x2 - 4

Substitute x = p2 + 5p.

= (p2 + 5p)2 - 4

Using Algebraic Identity (a + b)2 = a2 + 2ab + b2.

= (p2)2 + 2(p2)(5p) + (5p)2 - 4

= p4 + 10p3 + 25p- 4

Example 8 :

Divide (6x2 - 54) by (x2 + 7x + 12).

Solution :

= (6x2 - 54)/(x2 + 7x + 12)

= 6(x2 - 9)/[(x + 3)(x + 4)]

= 6(x- 32)/[(x + 3)(x + 4)]

= [6(x + 3)(x - 3)]/[(x + 3)(x + 4)]

= 6(x - 3)/(x + 4)

Example 9 :

Divide (2 - x) by (x2 + 4x - 12).

Solution :

= (2 - x)/(x2 + 4x - 12)

= (2 - x)/[(x + 6)(x - 2)]

= -(x - 2)/[(x + 6)(x - 2)]

= -1/(x + 6)

Example 10 :

Divide (x4 - 16) by (x2 + 5x + 6).

Solution :

= (x4 - 16)/(x2 + 5x + 6)

=  [(x2)2 - 42]/[(x + 2)(x + 3)]

= [(x2 + 4)(x2 - 4)]/[(x + 2)(x + 3)]

= [(x2 + 4)(x2 - 22)]/[(x + 2)(x + 3)]

= [(x2 + 4)(x + 2)(x - 2)]/[(x + 2)(x + 3)]

= [(x2 + 4)(x - 2)]/(x + 3)

Find the perimeter of the following shapes.

Example 11 :

find-perimeter-with-polynomial-q1.png

Solution :

Length = 2x and width = y

Perimeter of rectangle = 2(length + width)

= 2(2x + y)

= 4x + 2y

Example 12 :

find-perimeter-with-polynomial-q2.png

Solution :

Length = x and width = y2

Perimeter of rectangle = 2(length + width)

= 2(x + y2)

= 4x + 2y

Example 13 :

What should be added to x3 + 3x2y + 3xy2 + y3 to get x3 + y3 ?

Solution :

Let p(x) be the polynomial.

x3 + 3x2y + 3xy2 + y3 + p(x) =  x3 + y3 

p(x) =  x3 + y3 - (x3 + 3x2y + 3xy2 + y3)

Distributing the negative sign,

p(x) =  x3 + y3 - x3 - 3x2y - 3xy2 - y3

p(x) =  - 3x2y - 3xy2

So, the required polynomial to be added is - 3x2y - 3xy2

Example 14 :

How much is 21a3 - 17a2 less than 89a3 - 64a2 + 6a + 16?

Solution :

Let p(x) be the polynomial

= 89a3 - 64a2 + 6a + 16 - (21a3 - 17a2)

= 89a3 - 64a2 + 6a + 16 - 21a3 + 17a2

= 89a3 - 21a- 64a2 + 17a+ 6a + 16

= 68a3 - 47a2 + 6a + 16

Example 15 :

If P = –(x – 2), Q = –2(y + 1) and R = –x + 2y, find a, when

P + Q + R = ax.

Solution :

P + Q + R = ax

Given that,

P = –(x – 2), Q = –2(y + 1) and R = –x + 2y

-(x - 2) - 2(y + 1) - x + 2y = ax

-x + 2 - 2y - 2 - x + 2y = ax

-2x = ax

So, the value of a is -2.

Example 16 :

Arjun bought a rectangular plot with length x and breadth y and then sold a triangular part of it whose base is y and height is z. Find the area of the remaining part of the plot.

Solution :

Area of rectangular plot = length x width

Area of triangle = (1/2) x base x height

Area of remaining part = xy - (1/2) yz

= y(x - (1/2)z)

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. Digital SAT Math Problems and Solutions (Part - 254)

    Aug 12, 25 07:26 AM

    digitalsatmath362.png
    Digital SAT Math Problems and Solutions (Part - 254)

    Read More

  2. Digital SAT Math Problems and Solutions (Part - 253)

    Aug 10, 25 10:00 PM

    digitalsatmath361.png
    Digital SAT Math Problems and Solutions (Part - 253)

    Read More

  3. Digital SAT Math Problems and Solutions (Part - 252)

    Aug 10, 25 02:03 AM

    Digital SAT Math Problems and Solutions (Part - 252)

    Read More