ADD AND SUBTRACT RADICAL EXPRESSIONS

Subscribe to our ▶️ YouTube channel 🔴 for the latest videos, updates, and tips.

To add and subtract radicals, we need to be aware of like and unlike radicals.

Like Radicals :

The radicals which are having same number inside the root and same index is called like radicals.

Unlike Radicals :

Unlike radicals don't have same number inside the radical sign or index may not be same.

We can add and subtract like radicals only.

The following steps will be useful to simply radical expressions

Step 1 :

Decompose the number inside the radical sign into prime factors.  

Step 2 :

Take one number out of the radical for every two same numbers multiplied inside the radical sign, if the radical is a square root.

Take one number out of the radical for every three same numbers multiplied inside the radical sign, if the radical is a cube root.

Step 3 :

Simplify.

Examples :

√4  =  √(2  2)  =  2

√16  =  √(2  2  2  2)  =  2  2  =  2

3√27  =  3√(3  3  3)  =  3

3√125  =  3√(5  5  5)  =  5

Simplify the following radical expressions :

Example 1 :

√3 + √12

Solution :

= √3 + √12

= √3 + √(2  2  3)

= √3 + 2√3

= 3√3

Example 2 :

√75 + √25

Solution :

= √75 + √3

= √(5  5  3) + √3

= 5√3 + √3

= 6√3 

Example 3 :

√18 + √98

Solution :

= √18 + √98

= √(3  3  2) + √(7  7  2)

= 3√2 + 7√2

= 10√2

Example 4 :

√5 + 2√5 - 5√5

Solution :

= √5 + √20 - √125

= √5 + √(2  2  5) - √(5  5 ⋅ 5)

= √5 + 2√5 - 5√5

= -2√5

Example 5 :

√5 + 3√7 - 4√5 - 5√7

Solution :

√5 + 3√7 - 4√5 - 5√7

Group the like radicals.

= (√5 - 4√5) + (3√7  - 5√7)

Combine the like radicals.

= (-3√5) + (-2√7)

= -3√5 - 2√7

Example 6 :

3√3 + 4√3 - √2

Solution :

= 3√3 + 4√3 - √2

Group the like radicals.

= (3√3 + 4√3) - √2

Combine the like radicals.

= 7√3 - √2

Example 7 :

2(√5 - √3) + 3(√3 - √5)

Solution :

= 2(√5 - √3) + 3(√3 - √5)

Use Distributive Property.

= 2√5 - 2√3 + 3√3 - 3√5

Group the like radicals.

= (2√5 - 3√5) + (-2√3 + 3√3)

Combine the like radicals.

= -√5 + √3

Example 8 :

√8 + √18

Solution :

= √8 + √18

= √(2  2 ⋅ 2) + √(3  3  2)

= 2√2 + 3√2

 = 5√2

Example 9 :

3√16 + 3√54

Solution :

= 3√16 + 3√54

3√(2  2 ⋅ ⋅ 2) + 3√(3  3  3  2)

= 23√2 + 33√2

 = 53√2

Example 10 :

√25 + 53√64

Solution :

= √25 + 53√64

= √(5  5) + 53√(4  4  4)

= 5 + 5(4)

 = 5 + 20

= 25

Example 11 :

√12w + √27w

Solution :

= √(12w) + √(27w)

= √(2  2 ⋅  w) + √(3  3 ⋅  w)

= 2√3w + 3√3w

= 5√3w

Example 12 :

√45y3 + √25y3

Solution :

√45y3 + √25y3

= √(3 ⋅  5  y  y  y) + √(2  2  5  y  y  y)

= 3y√5y + 2y√5y

=5y√5y

= 5y√5y

Example 13 :

3√8x3y6 + √9x2y4

Solution :

3√8x3y6 + √9x2y4

3√(2 ⋅  2  x  x  x  y y y2) + √(3  3  x  x  y2  y2)

= 2xy2 + 3xy2

= 5xy2

Example 14 :

√4p2q4 - 3√125p3q6

Solution :

= √4p2q4 - 3√125p3q6

= √(2 ⋅  p  p  q q2) - √(5  5  5  p  p  p ⋅ q2  q q2)

= 2pq2 - 5pq2

= - 3pq2

Example 15 :

A square has sides each measuring 2√7 feet. Determine the area of the square.

Solution :

Side length of square = 2√7 feet

Area of square = Side x side

2√7 x 2√7

= 4 √7 x √7

= 4√(7x 7)

= 4 (7)

= 28 square feet

So, area of the square is 28 square feet.

Example 16 :

The period of a pendulum is the time required for it to make one complete swing back and forth. The formula of the period P of the pendulum is P = 2 π√(l/32), where l is the length of the pendulum in feet. If a pendulum in a clock tower is 8 feet long, find the period. Use 3.14 for  π.

Solution :

P = 2 π√(l/32)

Here l = 8 feet

P =  2 x 3.14√(8/32)

2 x 3.14√(1/4)

2 x 3.14 √(1/2 x 2)

= 2 x 3.14 x 1/2

= 3.14 feet

So, the length of period is 3.14 feet.

Example 17 :

A rectangle has width 3√5 centimeters and length 4√10 centimeters. Find the area of the rectangle.

Solution :

Length = 4√10 cm

Width = 3√5 cm

Area of rectangle = length x width

4√10 x 3√5

= (4 x 3) √10 √5

= 12 √(5 x 2 x 5)

= 12 x 5√2

= 60 √2 cm2

Example 18 :

A rectangle has length √(a/8) meters and width √(a/2) meters. What is the area of the rectangle ?

Solution :

Length = √(a/8) meters

Width = √(a/2) meters

Area of rectangle = length x width

= √(a/8) x √(a/2)

= √(a/8) x (a/2)

= √(a x a) /(2 x 2 x 2 x 2)

= a/(2 x 2)

= a/4

So, area of the rectangle is a/4 square meter.

Example 19 :

The formula for the area A of the square with side length s is A = s2. Solve this equation for s, find the side length of a square having an area of 72 square units.

Solution :

A = s2

Area of square = 72 square units.

72 = s2

s = √72

s = √(6 x 6 x 2)

= 6 √2

So, the side length of the square is 6 √2 units.

Example 20 :

Find the area of the rectangle 

adding-subtracting-radical-q1

Solution :

Length = 4√5 - 2√3

Width = 3√6 - √10

Area of rectangle = length x width

= (4√5 - 2√3)(3√6 - √10)

= 4√5 (3√6) - 4√5(√10) - 2√3(3√6) - 2√3(√10)

= 12√30 - 4√(5 x 5 x 2) - 6√(3 x 3 x 2) - 2√30

= 12√30 - (4 x 5)√2 - (6 x 3)√2 - 2√30

= 12√30 - 20√2 - 18√2 - 2√30

= 18√30 - 38√2

So, the area of the rectangle is 18√30 - 38√2 square units.

Subscribe to our ▶️ YouTube channel 🔴 for the latest videos, updates, and tips.

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

About Us  |  Contact Us  |  Privacy Policy

©All rights reserved. onlinemath4all.com

Recent Articles

  1. AP Calculus BC Problems with Solutions

    Dec 20, 25 10:51 AM

    AP Calculus BC Problems with Solutions

    Read More

  2. AP Precalculus Problems and Solutions (Part - 1)

    Dec 20, 25 10:49 AM

    AP Precalculus Problems and Solutions (Part - 1)

    Read More

  3. AP Calculus AB Problems with Solutions (Part - 1)

    Dec 20, 25 10:49 AM

    apcalculusab1.png
    AP Calculus AB Problems with Solutions (Part - 1)

    Read More