ADD AND SUBTRACT COMPLEX NUMBERS

Subscribe to our ▶️ YouTube channel 🔴 for the latest videos, updates, and tips.

The number which is in the form of a + ib is known as complex number. Every complex numbers will have two parts. They are real part and imaginary part. 

To add and subtract complex numbers, we have to combine the real parts together and imaginary parts together.

(a + ib) + (c + id) : 

= (a + c) + (ib + id)

= (a + c) + i(c + d)

Example 1 :

Add (-3i) and (3 + 5i).

Solution :

(-3i) + (3 + 5i) = 3 + (-3i + 5i)

= 3 + 2i

Example 2 :

Add (-6 - 2i) and (6 - 5i).

Solution :

(-6 - 2i) + (6 - 5i) = (-6 + 6) + (-2i - 5i)

= 0 + (-7i)

= -3i

Example 3 :

Add (5 + 6i) and (2 - 7i).

Solution :

(5 + 6i) + (2 - 7i) = (5 + 2) + (6i - 7i)

= 7 + (-i)

= 7 - i

Example 4 :

Add (5 - 6i), 5i and (7 + 6i).

Solution :

(5 - 6i) + 5i + (7 + 6i) = (5 + 7) + (-6i + 5i + 6i)

= 12 + 5i

Example 5 :

Simplify :  (-7 + 7i) - (-7 - 3i) + (-7 - 8i).

Solution :

(-7 + 7i) - (-7 - 3i) + (-7 - 8i) = -7 + 7i  + 7 + 3i - 7 - 8i

= (-7 + 7 - 7) + (7i + 3i - 8i)

= -7 + 2i

Example 6 :

Simplify : (-4 - 7i) - (4 + 5i) - (2 - i).

Solution :

(-4 - 7i) - (4 + 5i) - (2 - i) = -4 - 7i - 4 - 5i - 2 + i

= (-4 - 4 - 2) + (-7i - 5i + i)

= -10 + (-11i)

= -10 - 11i

Example 7 :

Simplify : (1 + 6i) + (6 - 2i) - (-7 + 5i).

Solution :

(1 + 6i) + (6 - 2i) - (-7 + 5i) = 1 + 6i + 6 - 2i + 7 - 5i

(1 + 6 + 7) + (6i - 2i - 5i)

= 14 + (-i)

= 14 - i

Example 8 :

Simplify : (-5 + 7i) - (-6 + i) - (-6 + 5i).

Solution :

(-5 + 7i) - (-6 + i) - (-6 + 5i) = -5 + 7i + 6 - i + 6 - 5i

= (-5 + 6 + 6) + (7i - i - 5i)

= 7 + i

Example 9 :

Subtract (3 - 4i) from (8 + 2i).

Solution :

(8 + 2i) - (3 - 4i) = 8 + 2i - 3 + 4i

= (8 - 3) + (2i + 4i)

= 5 + 6i

Example 10 :

Subtract (-5 - i) from (2 - 7i).

Solution :

(2 - 7i) - (-5 - i) = 2 - 7i + 5 + i

= (2  + 5) + (-7i + i)

= 7 + (-6i)

= 7 - 6i

Example 11 :

(1 + i)2 + (1 - i)2

Solution :

= (1 + i)2 + (1 - i)2

(1 + i)= 12 + 2(1)(i) + i2

= 1 + 2i - 1

= 2i

(1 - i)= 12 - 2(1)(i) + i2

= 1 - 2i - 1

= -2i

(1 + i)2 + (1 - i)2 = 2i - 2i

= 0

Example 12 :

(1 + i)8 + (1 - i)8

Solution :

= (1 + i)8 + (1 - i)8

(1 + i)8 = [(1 + i)2]4

= [12 + 2(1)(i) + i2]4

= (1 + 2i - 1)4

(2i)4

= 16i4

= 16(i2)2

= 16(-1)2

= 16

(1 - i)8 = [(1 - i)2]4

= [12 - 2(1)(i) + i2]4

= (1 - 2i - 1)4

(-2i)4

= 16i4

= 16(i2)2

= 16(-1)2

= 16

(1 + i)8 + (1 - i)8 = 16 + 16

= 32

So, the answer is 32.

Find the values of x and y that make each equation true.

Example 13 :

9 + 12i = 3x + 4iy

Solution :

Given that, 9 + 12i = 3x + 4iy

Since we have complex numbers on both sides of the equal sign, we have to equate the real parts and imaginary parts.

9 = 3x and 12 = 4y

x = 9/3 and y = 12/4

x = 3 and y = 3

Example 14 :

x + 1 + 2yi = 3 - 6i

Solution :

Given that, x + 1 + 2yi = 3 - 6i

(x + 1) + i (2y) = 3 - 6i

Equating the real and imaginary parts.

x + 1 = 3 and 2y = -6

x = 3 - 1 and y = -6/2

x = 2 and y = -3

Example 15 :

(2x + 7) + (3 - y)i = -4 + 6i

Solution :

(2x + 7) + (3 - y)i = -4 + 6i

2x + 7 = -4 and 3 - y = 6

2x = -4 - 7 and y = 3 - 6

2x = -11 and y = -3

x = -11/2 and y = -3

Subscribe to our ▶️ YouTube channel 🔴 for the latest videos, updates, and tips.

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

About Us  |  Contact Us  |  Privacy Policy

©All rights reserved. onlinemath4all.com

onlinemath4all_official_badge.png

Recent Articles

  1. 10 Hard SAT Math Questions (Part - 43)

    Jan 04, 26 01:38 AM

    10 Hard SAT Math Questions (Part - 43)

    Read More

  2. 90 Degree Clockwise Rotation

    Jan 01, 26 06:58 AM

    90degreeclockwiserotation1.png
    90 Degree Clockwise Rotation - Rule - Examples with step by step explanation

    Read More

  3. US Common Core K-12 Curriculum Algebra Solving Systems of Equations

    Jan 01, 26 04:51 AM

    US Common Core K-12 Curriculum - Algebra : Solving Systems of Linear Equations

    Read More