ADD AND SUBTRACT COMPLEX NUMBERS

The number which is in the form of a + ib is known as complex number. Every complex numbers will have two parts. They are real part and imaginary part. 

To add and subtract complex numbers, we have to combine the real parts together and imaginary parts together.

(a + ib) + (c + id) : 

= (a + c) + (ib + id)

= (a + c) + i(c + d)

Example 1 :

Add (-3i) and (3 + 5i).

Solution :

(-3i) + (3 + 5i) = 3 + (-3i + 5i)

= 3 + 2i

Example 2 :

Add (-6 - 2i) and (6 - 5i).

Solution :

(-6 - 2i) + (6 - 5i) = (-6 + 6) + (-2i - 5i)

= 0 + (-7i)

= -3i

Example 3 :

Add (5 + 6i) and (2 - 7i).

Solution :

(5 + 6i) + (2 - 7i) = (5 + 2) + (6i - 7i)

= 7 + (-i)

= 7 - i

Example 4 :

Add (5 - 6i), 5i and (7 + 6i).

Solution :

(5 - 6i) + 5i + (7 + 6i) = (5 + 7) + (-6i + 5i + 6i)

= 12 + 5i

Example 5 :

Simplify :  (-7 + 7i) - (-7 - 3i) + (-7 - 8i).

Solution :

(-7 + 7i) - (-7 - 3i) + (-7 - 8i) = -7 + 7i  + 7 + 3i - 7 - 8i

= (-7 + 7 - 7) + (7i + 3i - 8i)

= -7 + 2i

Example 6 :

Simplify : (-4 - 7i) - (4 + 5i) - (2 - i).

Solution :

(-4 - 7i) - (4 + 5i) - (2 - i) = -4 - 7i - 4 - 5i - 2 + i

= (-4 - 4 - 2) + (-7i - 5i + i)

= -10 + (-11i)

= -10 - 11i

Example 7 :

Simplify : (1 + 6i) + (6 - 2i) - (-7 + 5i).

Solution :

(1 + 6i) + (6 - 2i) - (-7 + 5i) = 1 + 6i + 6 - 2i + 7 - 5i

(1 + 6 + 7) + (6i - 2i - 5i)

= 14 + (-i)

= 14 - i

Example 8 :

Simplify : (-5 + 7i) - (-6 + i) - (-6 + 5i).

Solution :

(-5 + 7i) - (-6 + i) - (-6 + 5i) = -5 + 7i + 6 - i + 6 - 5i

= (-5 + 6 + 6) + (7i - i - 5i)

= 7 + i

Example 9 :

Subtract (3 - 4i) from (8 + 2i).

Solution :

(8 + 2i) - (3 - 4i) = 8 + 2i - 3 + 4i

= (8 - 3) + (2i + 4i)

= 5 + 6i

Example 10 :

Subtract (-5 - i) from (2 - 7i).

Solution :

(2 - 7i) - (-5 - i) = 2 - 7i + 5 + i

= (2  + 5) + (-7i + i)

= 7 + (-6i)

= 7 - 6i

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. Finding the Slope of a Tangent Line Using Derivative

    Mar 01, 24 10:45 PM

    Finding the Slope of a Tangent Line Using Derivative

    Read More

  2. Implicit Differentiation

    Mar 01, 24 08:48 PM

    Implicit Differentiation - Concept - Examples

    Read More

  3. Logarithmic Differentiation

    Mar 01, 24 08:12 AM

    Logarithmic Differentiation

    Read More