# ADD AND SUBTRACT COMPLEX NUMBERS

The number which is in the form of a + ib is known as complex number. Every complex numbers will have two parts. They are real part and imaginary part.

To add and subtract complex numbers, we have to combine the real parts together and imaginary parts together.

(a + ib) + (c + id) :

= (a + c) + (ib + id)

= (a + c) + i(c + d)

Example 1 :

Add (-3i) and (3 + 5i).

Solution :

(-3i) + (3 + 5i) = 3 + (-3i + 5i)

= 3 + 2i

Example 2 :

Add (-6 - 2i) and (6 - 5i).

Solution :

(-6 - 2i) + (6 - 5i) = (-6 + 6) + (-2i - 5i)

= 0 + (-7i)

= -3i

Example 3 :

Add (5 + 6i) and (2 - 7i).

Solution :

(5 + 6i) + (2 - 7i) = (5 + 2) + (6i - 7i)

= 7 + (-i)

= 7 - i

Example 4 :

Add (5 - 6i), 5i and (7 + 6i).

Solution :

(5 - 6i) + 5i + (7 + 6i) = (5 + 7) + (-6i + 5i + 6i)

= 12 + 5i

Example 5 :

Simplify :  (-7 + 7i) - (-7 - 3i) + (-7 - 8i).

Solution :

(-7 + 7i) - (-7 - 3i) + (-7 - 8i) = -7 + 7i  + 7 + 3i - 7 - 8i

= (-7 + 7 - 7) + (7i + 3i - 8i)

= -7 + 2i

Example 6 :

Simplify : (-4 - 7i) - (4 + 5i) - (2 - i).

Solution :

(-4 - 7i) - (4 + 5i) - (2 - i) = -4 - 7i - 4 - 5i - 2 + i

= (-4 - 4 - 2) + (-7i - 5i + i)

= -10 + (-11i)

= -10 - 11i

Example 7 :

Simplify : (1 + 6i) + (6 - 2i) - (-7 + 5i).

Solution :

(1 + 6i) + (6 - 2i) - (-7 + 5i) = 1 + 6i + 6 - 2i + 7 - 5i

(1 + 6 + 7) + (6i - 2i - 5i)

= 14 + (-i)

= 14 - i

Example 8 :

Simplify : (-5 + 7i) - (-6 + i) - (-6 + 5i).

Solution :

(-5 + 7i) - (-6 + i) - (-6 + 5i) = -5 + 7i + 6 - i + 6 - 5i

= (-5 + 6 + 6) + (7i - i - 5i)

= 7 + i

Example 9 :

Subtract (3 - 4i) from (8 + 2i).

Solution :

(8 + 2i) - (3 - 4i) = 8 + 2i - 3 + 4i

= (8 - 3) + (2i + 4i)

= 5 + 6i

Example 10 :

Subtract (-5 - i) from (2 - 7i).

Solution :

(2 - 7i) - (-5 - i) = 2 - 7i + 5 + i

= (2  + 5) + (-7i + i)

= 7 + (-6i)

= 7 - 6i

Kindly mail your feedback to v4formath@gmail.com

## Recent Articles

1. ### Finding the Slope of a Tangent Line Using Derivative

Mar 01, 24 10:45 PM

Finding the Slope of a Tangent Line Using Derivative

2. ### Implicit Differentiation

Mar 01, 24 08:48 PM

Implicit Differentiation - Concept - Examples