A CUBE MINUS B CUBE FORMULA

In this section, we are going to see the formula  for

a- b3

We already know the formula/expansion for (a - b)3.

That is, 

(a - b)3  =  a3 - b3 - 3ab(a - b)

Case 1 : 

(a - b)3  =  a3 - b3 - 3ab(a - b)

Add 3ab(a - b) to each side. 

(a - b)3 + 3ab(a - b)  =  a3 - b3

Therefore, the formula for (a3 - b3) is 

a3 - b3  =  (a - b)3 + 3ab(a - b)

Case 2 : 

From case 1, 

a3 - b3  =  (a - b)3 + 3ab(a - b)

a3 - b3  =  (a - b)[(a - b)2 + 3ab]

a3 - b3  =  (a - b)[a2 - 2ab + b+ 3ab]

a3 - b3  =  (a - b)(a2 + ab + b2)

Therefore, the formula for (a3 - b3) is 

a3 - b=  (a - b)(a2 + ab + b2)

So, 

(a - b) and (a2 + ab + b2)

are the factors of (a3 - b3).

Note : 

Based on our need, either we can use the formula in case 1 or in case 2 for (a3 - b3).

Practice Questions

Question 1 :

Factor :

x3 - 1

Solution :

Write (x3 - 1) in the form of (a3 - b3).

x3 - 1  =  x3 - 13

(x3 - 13) is in the form of (a3 - b3).

Comparing (a- b3) and (x- 13), we get

a  =  x

b  =  1

Write the formula for (a- b3) given in case 2 above.

a3 - b3  =  (a - b)(a2 + ab + b2)

Substitute x for a and 1 for b. 

x3 - 13  =  (x - 2)(x2 + x(1) + 12)

x3 + 1  =  (x - 1)(x2 + x + 1)

Question 2 :

Factor :

8x3 - 27y3

Solution :

Write (8x3 - 27y3) in the form of (a3 - b3).

8x3 - 27y3  =  (2x)3 - (3y)3

(2x)3 - (3y)3 is in the form of (a- b3).

Comparing (a- b3) and (2x)- (3y)3, we get

a  =  2x

b  =  3y

Write the formula for (a- b3) given in case 2 above.

a3 - b3  =  (a - b)(a2 + ab + b2)

Substitute 2x for a and 3y for b. 

(2x)3 - (3y)3  =  (2x - 3y)[(2x)2 + (2x)(3y) + (3y)2]

8x3 - 27y3  =  (2x - 3y)(4x2 + 6xy + 9y2)

Question 3 :

Factor :

125p3 - 64q3

Solution :

Write (125p3 - 64q3) in the form of (a3 - b3).

125p3 - 64q3  =  (5p)3 - (4q)3

(5p)3 - (4q)3 is in the form of (a- b3).

Comparing (a- b3) and (5p)- (4q)3, we get

a  =  5p

b  =  4q

Write the formula for (a- b3) given in case 2 above.

a3 - b3  =  (a - b)(a2 + ab + b2)

Substitute 5p for a and 4q for b. 

(5p)3 - (4q)3  =  (5p - 4q)[(5p)2 + (5p)(4q) + (4q)2]

125p3 - 64q3  =  (5p - 4q)(25p2 + 20pq + 16q2)

Question 4 :

Find the value of (m3 - n3), if m - n = 3 and mn = 28.

Solution :

Write (m- n3) in terms of (m - n) and mn using the formula given in case 1 above.

m3 - n3  =  (m - n)3 + 3mn(m - n)

Substitute 3 for (m - n) and 28 for xy. 

x3 - y3  =  (3)3 + 3(28)(3)

x3 - y3  =  27 + 252

x3 - y3  =  279

Apart from the stuff given in this section, if you need any other stuff, please use our google custom search here. 

Solo Build It!

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. Worksheet on Word Problems on Linear Equation in One Variable

    Aug 15, 22 12:24 AM

    Worksheet on Word Problems on Linear Equation in One Variable

    Read More

  2. Word Problems Involving Linear Equations

    Aug 14, 22 09:31 PM

    Word Problems Involving Linear Equations

    Read More

  3. Solving System of Linear Equations Word Problems Worksheet

    Aug 14, 22 09:17 PM

    Solving System of Linear Equations Word Problems Worksheet

    Read More