Mode in statistics :
Mode is one of the measures of central tendency which can be defined as follows.
For a given set of observations, mode may be defined as the value that occurs the maximum number of times.
Thus, mode is that value which has the maximum concentration of the observations around it. This can also be described as the most common value with which, even, a layman may be familiar with.
Thus, if the observations are 5, 3, 8, 9, 5 and 6, then Mode (Mo) = 5 as it occurs twice and all the other observations occur just once.
The definition for mode also leaves scope for more than one mode. Thus sometimes we may come across a distribution having more than one mode. Such a distribution is known as a multi-modal distribution. Bi-modal distribution is one having two modes.
Furthermore, it also appears from the definition that mode is not always defined. As an example,
If the marks of 5 students are 50, 60, 35, 40, 56, there is no modal mark as all the observations occur once i.e. the same number of times.
We may consider the following formula for computing mode from a grouped frequency distribution:
Where,
l₁ = LCB of the modal class
f₀ = frequency of the modal class
f₋₁ = frequency of the pre modal class
f₁ = frequency of the post modal class
C = class length of the modal class
Compute the mode for the following distribution
Solution :
Computation of mode
For the given data, the formula to find mode is given by
Going through the frequency column, we note that the highest frequency i.e. f₀ is 82.
So we have,
f₋₁ = 58
f₁ = 65
Also, the modal class i.e. the class against the highest frequency is 410 - 419
Thus,
l₁ = LCB = 409.50
C = 429.50 - 409.50 = 20
C = 429.50 – 409.50 = 20
Plugging these values in the above formula, we get
Mode = 409.50 + [ (82-58) / (2x52 - 58 - 65) ] x 20
Mode = 409.50 + 11.71
Mode = 421.21
When it is difficult to compute mode from a grouped frequency distribution, we may consider the following empirical relationship between mean, median and mode:
Mean - Mode = 3(Mean - Median)
or
Mode = 3 x median - 2 x mean
The above result holds for holds for a moderately skewed distribution.
We also note that if y = a + bx, then we have
Mode of "y" = a + b (Mode of "x")
For example, if y = 2 + 1.50x and mode of x is 15, then the mode of y is given by
Mode of "y" = 2 + 1.50(Mode of "x")
Mode of "y" = 2 + 1.50x15
Mode of "y" = 2 + 22.50
Mode of "y" = 24.50
1) Although mode is the most popular measure of central tendency, there are cases when mode remains undefined.
2) Unlike mean, it has no mathematical property.
3) Mode is affected by sampling fluctuations.
After having gone through the stuff given above, we hope that the students would have understood "Mode in statistics".
Apart from the stuff given above, if you want to know more about "Mode in statistics",please click here
Apart from the stuff given on this web page, if you need any other stuff in math, please use our google custom search here.
WORD PROBLEMS
HCF and LCM word problems
Word problems on simple equations
Word problems on linear equations
Word problems on quadratic equations
Area and perimeter word problems
Word problems on direct variation and inverse variation
Word problems on comparing rates
Converting customary units word problems
Converting metric units word problems
Word problems on simple interest
Word problems on compound interest
Word problems on types of angles
Complementary and supplementary angles word problems
Markup and markdown word problems
Word problems on mixed fractrions
One step equation word problems
Linear inequalities word problems
Ratio and proportion word problems
Word problems on sets and venn diagrams
Pythagorean theorem word problems
Percent of a number word problems
Word problems on constant speed
Word problems on average speed
Word problems on sum of the angles of a triangle is 180 degree
OTHER TOPICS
Time, speed and distance shortcuts
Ratio and proportion shortcuts
Domain and range of rational functions
Domain and range of rational functions with holes
Graphing rational functions with holes
Converting repeating decimals in to fractions
Decimal representation of rational numbers
Finding square root using long division
L.C.M method to solve time and work problems
Translating the word problems in to algebraic expressions
Remainder when 2 power 256 is divided by 17
Remainder when 17 power 23 is divided by 16
Sum of all three digit numbers divisible by 6
Sum of all three digit numbers divisible by 7
Sum of all three digit numbers divisible by 8
Sum of all three digit numbers formed using 1, 3, 4
Sum of all three four digit numbers formed with non zero digits