# GCD OF POLYNOMIALS USING DIVISION ALGORITHM

GCD of Polynomials Using Division Algorithm :

If f (x) and g(x) are two polynomials of same degree then the polynomial carrying the highest coefficient will be the dividend.

In case, if both have the same coefficient then compare the next least degree’s coefficient and proceed with the division.

If r (x) = 0 when f(x) is divided by g(x) then g(x) is called GCD of the polynomials. ## GCD of Polynomials Using Division Algorithm - Questions

Question 1 :

Find the GCD of the given polynomials

(i) x4 + 3x3 −x −3, x3 +x2 −5x + 3

Solution :

Let f(x)  =  x4 + 3x3 −x −3

g(x)  =  x3 +x2 −5x + 3

The degree of the polynomial f(x) is greater than g(x).

Note : If we have any missing term, we have to replace that place by 0. The remainder is 3(x2 + 2x - 3), which is not equal to 0.So, we have to divide x3 +x2 −5x + 3 by x2 + 2x - 3 by leaving the remainder. We get 0 as remainder by dividing the given polynomial by x2 + 2x - 3.

Hence the required GCD is x2 + 2x - 3.

(ii) x4  - 1,  x3 - 11x2 + x - 11

Solution :

Let f(x)  =  x4  - 1

g(x)  =  x3 - 11x2 + x - 11

The degree of the polynomial f(x) is greater than g(x). The remainder is 120(x2 + 1), which is not equal to 0.So, we have to divide  x3 - 11x2 + x - 11 by 120(x2 + 1) by leaving the remainder. Hence the G.C.D is x2 + 1

(iii) 3x4 + 6x3 −12x2 −24x, 4x4 +14x3 + 8x2 −8x

Solution :

Let f(x)  =  3x4 + 6x3 −12x2 −24x

f(x)  =  3x(x3 + 2x2 - 4x - 8)

g(x)  =  4x4 +14x3 + 8x2 −8x

g(x)  =  2x (x3 + 7x2 + 4x - 4) The remainder is 3(x2 + 4x + 4), which is not equal to 0.So, we have to divide  x3 + 2x2 - 4x - 8 by x2 + 4x + 4 by leaving the remainder. By dividing x2 + 4x + 4, we get 0 remainder. The term x is also common for both the polynomials.

Hence the G.C.D is x(x2 + 4x + 4).

(iv)  3x3 + 3x2 + 3x + 3 , 6x3 +12x2 + 6x +12

Solution :

Let f(x)  =  3x3 + 3x2 + 3x + 3

f(x)  =  3(x3 + x2 + x + 1)

g(x)  =  6x3 + 12x2 + 6x + 12

g(x)  =  6(x3 + 2x2 + x + 2) The remainder is (x2 + 0x + 1), which is not equal to 0.So, we have to divide  x3 + x2 + x + 1 by x2 + 0x + 1 by leaving the remainder. By dividing x2 + 1, we get 0 remainder. The constant 3 is also common for both the polynomials.

Hence the G.,C.D is 3(x2 + 1). After having gone through the stuff given above, we hope that the students would have understood, "GCD of Polynomials Using Division Algorithm".

Apart from the stuff given in this section "GCD of Polynomials Using Division Algorithm"if you need any other stuff in math, please use our google custom search here.

You can also visit our following web pages on different stuff in math.

WORD PROBLEMS

Word problems on simple equations

Word problems on linear equations

Algebra word problems

Word problems on trains

Area and perimeter word problems

Word problems on direct variation and inverse variation

Word problems on unit price

Word problems on unit rate

Word problems on comparing rates

Converting customary units word problems

Converting metric units word problems

Word problems on simple interest

Word problems on compound interest

Word problems on types of angles

Complementary and supplementary angles word problems

Double facts word problems

Trigonometry word problems

Percentage word problems

Profit and loss word problems

Markup and markdown word problems

Decimal word problems

Word problems on fractions

Word problems on mixed fractrions

One step equation word problems

Linear inequalities word problems

Ratio and proportion word problems

Time and work word problems

Word problems on sets and venn diagrams

Word problems on ages

Pythagorean theorem word problems

Percent of a number word problems

Word problems on constant speed

Word problems on average speed

Word problems on sum of the angles of a triangle is 180 degree

OTHER TOPICS

Profit and loss shortcuts

Percentage shortcuts

Times table shortcuts

Time, speed and distance shortcuts

Ratio and proportion shortcuts

Domain and range of rational functions

Domain and range of rational functions with holes

Graphing rational functions

Graphing rational functions with holes

Converting repeating decimals in to fractions

Decimal representation of rational numbers

Finding square root using long division

L.C.M method to solve time and work problems

Translating the word problems in to algebraic expressions

Remainder when 2 power 256 is divided by 17

Remainder when 17 power 23 is divided by 16

Sum of all three digit numbers divisible by 6

Sum of all three digit numbers divisible by 7

Sum of all three digit numbers divisible by 8

Sum of all three digit numbers formed using 1, 3, 4

Sum of all three four digit numbers formed with non zero digits

Sum of all three four digit numbers formed using 0, 1, 2, 3

Sum of all three four digit numbers formed using 1, 2, 5, 6 