About "Diagrammatic representation of data"

Diagrammatic representation of data :

An attractive representation of statistical data is provided by charts, diagrams and pictures.

Diagrammatic representation can be used for both the educated section and uneducated section of the society. Furthermore, any hidden trend present in the given data can be noticed only in this mode of representation.

However, compared to tabulation, this is less accurate.

So if there is a priority for accuracy, we have to recommend tabulation.

We are going to consider the following types of diagrams :

1.  Line diagram

2. Histogram

3.  Bar diagram

4.  Pie chart

Let us discuss the above four diagrammatic representations of data in detail. 

Line diagram

When the time series exhibit a wide range of fluctuations, we may think of logarithmic or ratio chart where "Log y" and not "y" is plotted against "t".

We use Multiple line chart for representing two or more related time series data expressed in the same unit and multiple – axis chart in somewhat similar situations, if the variables are expressed in different units.

Line diagram - Example

Example :

The profits in thousand of dollars of an industrial house for 2002, 2003, 2004, 2005, 2006, 2007 and 2008 are 5, 8, 9, 6, 12, 15 and 24 respectively. Represent these data using a suitable diagram.

Solution :

We can represent the profits for 7 consecutive years by drawing either a line diagram as given below.

Let us consider years on horizontal axis and profits on vertical axis.

For the year 2002, the profit is 5 thousand dollars. It can be written as a point (2002, 5)

In the same manner, we can write the following points for the succeeding years.

(2003, 8), (2004, 9), (2005, 6), (2006, 12), (2007, 15) and (2008, 24)

Now, plotting all these point and joining them using ruler, we can get the line diagram.

Showing line diagram for the profit of an Industrial House during 2002 to 2008.

Let us look at the next stuff on "Diagrammatic representation of data"


A two dimensional graphical representation of a continuous frequency distribution is called a histogram.

In histogram, the bars are placed continuously side by side with no gap between adjacent bars.

That is, in histogram rectangles are erected on the class intervals of the distribution. The areas of rectangle are proportional to the frequencies.

Histogram - Example

Example 1 :

Draw a histogram for the following table which represent the marks obtained by 100 students in an examination :

Solution :

The class intervals are all equal with length of 10 marks.

Let us denote these class intervals along the X-axis.

Denote the number of students along the Y-axis, with appropriate scale.

The histogram is given below.

Let us look at the next stuff on "Diagrammatic representation of data"

Bar diagram

There are two types of bar diagrams namely, Horizontal Bar diagram and Vertical bar diagram.

While horizontal bar diagram is used for qualitative data or data varying over space, the vertical bar diagram is associated with quantitative data or time series data.

Bars i.e. rectangles of equal width and usually of varying lengths are drawn either horizontally or vertically.

We consider Multiple or Grouped Bar diagrams to compare related series. Component or sub-divided Bar diagrams are applied for representing data divided into a number of components. Finally, we use Divided Bar charts or Percentage

Bar diagrams for comparing different components of a variable and also the relating of the components to the whole. For this situation, we may also use Pie chart or Pie diagram or circle diagram.

Bar diagram - Example

Example : 

The total number of runs scored by a few players in one-day match is given.

Solution :

Draw bar graph for the above data.

Let us look at the next stuff on "Diagrammatic representation of data"

Pie chart

In a pie chart, the various observations or components are represented by the sectors of a circle and the whole circle represents the sum of the value of all the components .Clearly, the total angle of 360° at the center of the circle is divided according to the values of the components .

The central angle of a component is

=  [ Value of the component  /  Total value] x 360°

Sometimes, the value of the components are expressed in percentages. In such cases,

The central angle of a component is

=  [ Percentage value of the component  /  100 ] x 360°

Pie chart - Example

Example : 

The number of hours spent by a school student on various activities on a working day, is given below. Construct a pie chart using the angle measurement.

Draw a pie chart to represent the above information.

Solution :

The central angle of a component is

=  [ Value of the component  /  Total value] x 360°

We may calculate the central angles for various components as follows :

From the above table, clearly, we obtain the required pie chart as shown below.

After having gone through the stuff given above, we hope that the students would have understood "Diagrammatic representation of data. 

Apart from the stuff given above, if you want to know more about "Diagrammatic representation of data", please click here

Apart from the stuff "Diagrammatic representation of data", if you need any other stuff in math, please use our google custom search here.

HTML Comment Box is loading comments...


Variables and constants

Writing and evaluating expressions

Solving linear equations using elimination method

Solving linear equations using substitution method

Solving linear equations using cross multiplication method

Solving one step equations

Solving quadratic equations by factoring

Solving quadratic equations by quadratic formula

Solving quadratic equations by completing square

Nature of the roots of a quadratic equations

Sum and product of the roots of a quadratic equations 

Algebraic identities

Solving absolute value equations 

Solving Absolute value inequalities

Graphing absolute value equations  

Combining like terms

Square root of polynomials 

HCF and LCM 

Remainder theorem

Synthetic division

Logarithmic problems

Simplifying radical expression

Comparing surds

Simplifying logarithmic expressions

Negative exponents rules

Scientific notations

Exponents and power


Quantitative aptitude

Multiplication tricks


Aptitude test online


Test - I

Test - II


Horizontal translation

Vertical translation

Reflection through x -axis

Reflection through y -axis

Horizontal expansion and compression

Vertical  expansion and compression

Rotation transformation

Geometry transformation

Translation transformation

Dilation transformation matrix

Transformations using matrices





Converting customary units worksheet

Converting metric units worksheet

Decimal representation worksheets

Double facts worksheets

Missing addend worksheets

Mensuration worksheets

Geometry worksheets

Comparing  rates worksheet

Customary units worksheet

Metric units worksheet

Complementary and supplementary worksheet

Complementary and supplementary word problems worksheet

Area and perimeter worksheets

Sum of the angles in a triangle is 180 degree worksheet

Types of angles worksheet

Properties of parallelogram worksheet

Proving triangle congruence worksheet

Special line segments in triangles worksheet

Proving trigonometric identities worksheet

Properties of triangle worksheet

Estimating percent worksheets

Quadratic equations word problems worksheet

Integers and absolute value worksheets

Decimal place value worksheets

Distributive property of multiplication worksheet - I

Distributive property of multiplication worksheet - II

Writing and evaluating expressions worksheet

Nature of the roots of a quadratic equation worksheets

Determine if the relationship is proportional worksheet



Trigonometric ratio table

Problems on trigonometric ratios

Trigonometric ratios of some specific angles

ASTC formula

All silver tea cups

All students take calculus 

All sin tan cos rule

Trigonometric ratios of some negative angles

Trigonometric ratios of 90 degree minus theta

Trigonometric ratios of 90 degree plus theta

Trigonometric ratios of 180 degree plus theta

Trigonometric ratios of 180 degree minus theta

Trigonometric ratios of 180 degree plus theta

Trigonometric ratios of 270 degree minus theta

Trigonometric ratios of 270 degree plus theta

Trigonometric ratios of angles greater than or equal to 360 degree

Trigonometric ratios of complementary angles

Trigonometric ratios of supplementary angles 

Trigonometric identities 

Problems on trigonometric identities 

Trigonometry heights and distances

Domain and range of trigonometric functions 

Domain and range of inverse  trigonometric functions

Solving word problems in trigonometry

Pythagorean theorem


Mensuration formulas

Area and perimeter



Types of angles 

Types of triangles

Properties of triangle

Sum of the angle in a triangle is 180 degree

Properties of parallelogram

Construction of triangles - I 

Construction of triangles - II

Construction of triangles - III

Construction of angles - I 

Construction of angles - II

Construction angle bisector

Construction of perpendicular

Construction of perpendicular bisector

Geometry dictionary

Geometry questions 

Angle bisector theorem

Basic proportionality theorem


Analytical geometry formulas

Distance between two points

Different forms equations of straight lines

Point of intersection

Slope of the line 

Perpendicular distance


Area of triangle

Area of quadrilateral



Matrix Calculators

Analytical geometry calculators

Statistics calculators

Mensuration calculators

Algebra calculators

Chemistry periodic calculator


Missing addend 

Double facts 

Doubles word problems


Direct proportion and inverse proportion

Constant of proportionality 

Unitary method direct variation

Unitary method inverse variation

Unitary method time and work


Order of rotational symmetry

Order of rotational symmetry of a circle

Order of rotational symmetry of a square

Lines of symmetry


Converting metric units

Converting customary units


HCF and LCM  word problems

Word problems on simple equations 

Word problems on linear equations 

Word problems on quadratic equations

Algebra word problems

Word problems on trains

Area and perimeter word problems

Word problems on direct variation and inverse variation 

Word problems on unit price

Word problems on unit rate 

Word problems on comparing rates

Converting customary units word problems 

Converting metric units word problems

Word problems on simple interest

Word problems on compound interest

Word problems on types of angles 

Complementary and supplementary angles word problems

Double facts word problems

Trigonometry word problems

Percentage word problems 

Profit and loss word problems 

Markup and markdown word problems 

Decimal word problems

Word problems on fractions

Word problems on mixed fractrions

One step equation word problems

Linear inequalities word problems

Ratio and proportion word problems

Time and work word problems

Word problems on sets and venn diagrams

Word problems on ages

Pythagorean theorem word problems

Percent of a number word problems

Word problems on constant speed

Word problems on average speed 

Word problems on sum of the angles of a triangle is 180 degree


Profit and loss shortcuts

Percentage shortcuts

Times table shortcuts

Time, speed and distance shortcuts

Ratio and proportion shortcuts

Domain and range of rational functions

Domain and range of rational functions with holes

Graphing rational functions

Graphing rational functions with holes

Converting repeating decimals in to fractions

Decimal representation of rational numbers

Finding square root using long division

L.C.M method to solve time and work problems

Translating the word problems in to algebraic expressions

Remainder when 2 power 256 is divided by 17

Remainder when 17 power 23 is divided by 16

Sum of all three digit numbers divisible by 6

Sum of all three digit numbers divisible by 7

Sum of all three digit numbers divisible by 8

Sum of all three digit numbers formed using 1, 3, 4

Sum of all three four digit numbers formed with non zero digits

Sum of all three four digit numbers formed using 0, 1, 2, 3

Sum of all three four digit numbers formed using 1, 2, 5, 6