Adjoint of Matrix Questions 2





In this page adjoint of matrix questions 2 we are going to see solution of question 1 based on the topic ad-joint of matrix.

Question 2

Find the ad-joint of the following matrix 

 
1 2 3
1 1 1
2 3 4
 


Solution:

minor of 1

=
1 1
-1 2

   = [4-3]

   = 1

Cofactor of 1

   =  + (1)

   =   1

minor of 2

=
1 1
2 4

   = [4-2]

   = 2

Cofactor of 2

   =  - (2)

   =   -2

minor of 3

=
1 1
2 3

   = [3-2]

   = 1

Cofactor of 3

   =  + (1)

   =   1

minor of 1

=
2 3
3 4

   = [8-9]

   = -1

Cofactor of 1

   =  - (-1)

   =   1

minor of 1

=
1 3
2 4

   = [4-6]

   = -2

Cofactor of 1

   =  + (-2)

   =   -2

minor of 1

=
1 2
2 3

   = [3-4]

   = -1

Cofactor of 1

   =  - (-1)

   =   1

minor of 2

=
2 3
1 1

   = [2-3]

   = -1

Cofactor of 2

   =  + (-1)

   =   -1

minor of 3

=
1 3
1 1

   = [1-3]

   = -2

Cofactor of 3

   =  - (-2)

   =   2

minor of 4

=
1 2
1 1

adjoint of matrix questions 2

   = [1-2]

   = -1

Cofactor of 4

   =  + (-1)

   =   -1

co-factor matrix =

 
1 -2 1
1 -2 1
-1 2 -1
 

adjoint of matrix =

 
1 1 -1
-2 -2 2
1 1 -1
 







HTML Comment Box is loading comments...