On this web page "Trigonometric identities" we are going to see the formulas which are being used to solve all kinds of problems on Trigonometry.

sin θ = Opposite side/Hypotenuse side

cos θ = Adjacent side/Hypotenuse side

tan θ = Opposite side/Adjacent side

csc θ = Hypotenuse side/Opposite side

sec θ = Hypotenuse side/Adjacent side

cot θ = Adjacent side /Opposite side

Now let us see the reciprocal trigonometric identities

sin θ = 1/Cosec θ

csc θ = 1/sin θ

cos θ = 1/sec θ

sec θ = 1/cos θ

tan θ = 1/cot θ

cot θ = 1/tan θ

Let us see some other important trigonometric identities

sin² θ + cos² θ = 1

sin² θ = 1 - cos² θ

cos² θ = 1 - sin² θ

sec² θ - tan² θ = 1

sec² θ = 1 + tan² θ

tan² θ = sec² θ - 1

csc² θ - cot² θ = 1

csc² θ = 1 + cot² θ

cot² θ = csc² θ - 1

Now, let us see double angle trigonometric formulas

1. sin 2A = 2 sin A cos A

2. cos 2A = cos² A - sin² A

3. tan 2A = 2 tan A / (1-tan² A)

4. cos 2A = 1 - 2sin² A

5. cos 2A = 2cos² A - 1

6. sin 2A = 2 tan A / (1+tan² A)

7. cos 2A = (1 - tan² A) / (1+tan² A)

8. sin²A = (1 - cos 2A) / 2

9. cos²A = (1 + cos 2A) / 2

These identities are applied in both the ways ,left to right and right to left.

Now, let us see half angle trigonometric-formulas

sin A = 2sin(A/2)cos(A/2)

cos A = cos²(A/2) - sin²(A/2)

tan A = 2 tan(A/2) / [1 - tan²(A/2)]

cos A = 1 - 2sin²(A/2)

cos A = 2cos²(A/2) - 1

sin A = 2tan(A/2) / [1 + tan²(A/2)]

cos A = [1 - tan²(A/2)] / [1 + tan²(A/2)]

sin²A/2 = (1 - cos A) / 2

Cos²A/2 = (1 + cos A) / 2

tan²(A/2) = (1 - cos A) / (1 + cos A)

**Now, let us see compound angle trigonometric-formulas**

**1. Sin (A+B****) = Sin A Cos B + Cos A Sin B**

**2. Sin (A+B****) = Sin A Cos B + Cos A Sin B**

**3. Cos (A+B****) = Cos A Cos B - Sin A Sin B**

**4. Cos (A-B****) = Cos A Cos B + Sin A Sin B**

**5.Tan (A+B) = [Tan A + Tan B] /(1- Tan A Tan B) **

**6.Tan (A-B) = [Tan A - Tan B] /(1+ Tan A Tan B) **

**Now, let us see sum to producty trigonometric-formulas**

**1.Sin C + Sin D = 2 Sin [(C+D)/2] cos ****[(C-D)/2]**

**2.Sin C - Sin D = 2 Cos [(C+D)/2] Sin ****[(C-D)/2]**

**3.Cos C + Cos D = 2 Cos [(C+D)/2] Cos ****[(C-D)/2]**

**4.Cos C - Cos D = 2 Sin [(C+D)/2] Sin ****[(C-D)/2]**

**Sin 3A = 3 Sin A - 4 sin³A**

**Cos 3A = 4 Cos³A - 3 Cos A **

**tan 3A = (3 tan A - tan³ A)/(1-3tan²A)**

**Step 1 :**

Understanding the question and drawing the appropriate diagram are the two most important things to be done in solving word problems in trigonometry.

**Step 2 :**

If it is possible, we have to split the given information. Because, when we split the given information in to parts, we can understand them easily.

**Step 3 :**

We have to draw diagram almost for all of the word problems in trigonometry. The diagram we draw for the given information must be correct. Drawing diagram for the given information will give us a clear understanding about the question.

**Step 4 :**

Once we understand the given information clearly and correct diagram is drawn, solving word problems in trigonometry would not be a challenging work.

**Step 5 :**

After having drawn the appropriate diagram based on the given information, we have to give name for each position of the diagram using English alphabets (it is clearly shown in the word problem given below). Giving name for the positions would be easier for us to identify the parts of the diagram.

**Step 6 :**

Now we have to use one of the three trigonometric ratios (sin, cos and tan) to find the unknown side or angle.

Once the diagram is drawn and we have translated the English Statement (information) given in the question as mathematical equation using trigonometric ratios correctly, 90% of the work will be over. The remaining 10% is just getting the answer. That is solving for the unknown.

These are the most commonly steps involved in solving word problems in trigonometry.

After having gone through the stuff given above, we hope that the students would have understood "Trigonometric identities"

Apart from the formulas given above, if you want to know more about "Trigonometric identities", please click here.

If you need any other stuff in math, please use our google custom search here

HTML Comment Box is loading comments...

**WORD PROBLEMS**

**HCF and LCM word problems**

**Word problems on simple equations **

**Word problems on linear equations **

**Word problems on quadratic equations**

**Area and perimeter word problems**

**Word problems on direct variation and inverse variation **

**Word problems on comparing rates**

**Converting customary units word problems **

**Converting metric units word problems**

**Word problems on simple interest**

**Word problems on compound interest**

**Word problems on types of angles **

**Complementary and supplementary angles word problems**

**Markup and markdown word problems **

**Word problems on mixed fractrions**

**One step equation word problems**

**Linear inequalities word problems**

**Ratio and proportion word problems**

**Word problems on sets and venn diagrams**

**Pythagorean theorem word problems**

**Percent of a number word problems**

**Word problems on constant speed**

**Word problems on average speed **

**Word problems on sum of the angles of a triangle is 180 degree**

**OTHER TOPICS **

**Time, speed and distance shortcuts**

**Ratio and proportion shortcuts**

**Domain and range of rational functions**

**Domain and range of rational functions with holes**

**Graphing rational functions with holes**

**Converting repeating decimals in to fractions**

**Decimal representation of rational numbers**

**Finding square root using long division**

**L.C.M method to solve time and work problems**

**Translating the word problems in to algebraic expressions**

**Remainder when 2 power 256 is divided by 17**

**Remainder when 17 power 23 is divided by 16**

**Sum of all three digit numbers divisible by 6**

**Sum of all three digit numbers divisible by 7**

**Sum of all three digit numbers divisible by 8**

**Sum of all three digit numbers formed using 1, 3, 4**

**Sum of all three four digit numbers formed with non zero digits**