Solution 1





In this page 'solution 1' we are going to see step by step methods of finding the equation of ellipse for the given foci, eccentricity and directrix. 

Practice Problem 1:

            Find the equation of ellipse whose focus is (1,2), directrix is 2x-3y+6=0 and eccentricity is 2/3.

Solution for practice problem 1:

            Focus             =    (1,2)

            Directrix         =    2x-3y+6=0

            Eccentricity     =    2/3

(x₁-1)² + (y₁-1)² =  (4/9)[(2x₁-3y₁+6)/√(4+9)]²

                                         =  (4/(9*13))(2x₁-3y₁+6)²

9*13[x₁²-2x₁+1+y₁²-4y₁+4] = 4(4x₁²+9y₁²+36-12x₁y₁-36y₁+24x₁)  

117x₁²-234x₁+117+117y₁²-468y₁+468 =

                                               16x₁²+36y₁²+144-48x₁y₁-144y₁+96x₁

117x₁²-16x₁²-234x₁-96x₁+117y₁²-36y₁²-468y₁+144y₁+48x₁y₁+

                                                       117+468-144 = 0

101x₁²+81y₁²-330x₁-324y₁+48x₁y₁+441   = 0

The locus of (x₁,y₁), i.e., The equation of ellipse is

               101x²+81y²-330x-324y+48xy+441   = 0                         


Practice Problem 2:

            Find the equation of the ellipse whose foci are (4,0) and (-4,0) and e =1/3.

Solution for practice problem 2:

            This problem is little different from the previous problem. In the previous problem one focus and directrix is given. But here two foci are given. So we follow little different method to solve this problem.

            Foci  = (4,0) and (-4,0)

            eccentricity = 1/3

                      ae   =  4

                       e   =   1/3

                 ∴    a   =   4x3  = 12

                       b²  =   a²(1-e²)

                            =   12²(1-⅓²)

                            =   144(1-(1/9))

                            =   128

         The standard equation of ellipse is

                   x²/a²   +   y²/b²   =1

         So the required equation is

                  x²/144  +  y²/128 = 1

Parents and teachers can guide the students to follow the solutions in this page 'Solution 1', step by step. Students can practice the problems in the methods discussed above and try to solve the problems given below on their own. If you have any doubt you can contact us through mail, we will help you to clear your doubts.

Problems for practice:

  1. Find the equation of ellipse whose focus is (0,0), directrix 3x+4y-1=0 and eccentricity is 5/6.
  2. Find the equation of the ellipse whose foci are (3,0) and (-3,0) and the eccentricity is 3/8,




Home

[?]Subscribe To This Site
  • XML RSS
  • follow us in feedly
  • Add to My Yahoo!
  • Add to My MSN
  • Subscribe with Bloglines