In this page ratio and proportion solution6 we are going to see solution of each question from the worksheet ratio and proportion.

Before going to see solution of some practice questions from the worksheet ratio and proportion let us consider the definition of compounded ratio.

**Definition:**

When the antecedents of two or more ratios are multiplied to form a new antecedent and consequents are multiplied to form a new consequent, the new ratio is known as their compounded ratio.

for example

(5) Find the compounded ratio of

(i) 3 : 5 and 2 : 7

To find the compounded ratio we have to multiply the antecedent of two ratios to form a new antecedent and multiply the consequents of two ratios to form a new consequent.

Step 1 : write the given ratios as fractions

3 : 5 = 3/5

2 : 7 = 2/7

Step 2: Multiply the numerator with numerator and denominator with denominator

(3/5) **x** (2/7) = 6/35

Step 3: Write fraction as ratio

= 6 : 35

Therefore the compounded ratio is** 6 : 35**

(ii) 2 : 3 , 4 : 5 and 5 : 8

To find the compounded ratio we have to multiply the antecedent of two ratios to form a new antecedent and multiply the consequents of two ratios to form a new consequent.

Step 1 : write the given ratios as fractions

2 : 3 = 2/3

4 : 5 = 4/5

5 : 8 = 5/8

Step 2: Multiply the numerator with numerator and denominator with denominator

(2/3) **x** (4/5) **x** (5/8) = 40/120

If it is possible we can simplify

= 1/3

Step 3: Write fraction as ratio

= 1 : 3

Therefore the compounded ratio is** 1 : 3**

ratio and proportion solution6 ratio and proportion solution6

- Back to worksheet
- Time and Work
- Time and Distance
- Ratio and Proportion
- Average
- Percentage
- Profit and Loss
- Hour Clock Arithmetic
- Day Arithmetic
- Month Arithmetic
- Equations
- Odd man out
- Problems on Ages
- Pipes and Cisterns
- Boats and Streams
- Mixture Problems
- Problems on Trains