**Making predictions with linear equations :**

We can use an equation of a linear relationship to predict a value between data points that we already know.

In most of the cases, we use slope-intercept form equation to make predictions.

To have better understanding on "Making predictions with linear equations", let us look at some examples.

**Example 1 : **

The graph shows the cost for taxi rides of different distances. Predict the cost of a taxi ride that covers a distance of 6.5 miles.

**Solution : **

Since we want to predict the cost of a taxi ride, the appropriate linear equation for the given situation is slope-intercept form (y = mx + b), assuming "y" as the cost of a taxi ride and "x" as distance.

**Step 1 : **

Write the equation of the linear relationship.

Choose any two points in the form (x, y), from the graph to find the slope :

For example, let us choose (2, 7) and (4, 11).

Use the slope formula.

m = (y₂ - y₁) / (x₂ - x₁)

Substitute (2, 7) for (x₁, y₁) and (4, 11) for (x₂, y₂).

m = (11 - 7) / (4 - 2)

m = 4 / 2

m = 2

**Step 3 : **

Find the y-intercept using the slope and any point from the table.

Slope-intercept form equation of a line :

y = mx + b

Plug m = 2, and (x, y) = (2, 7)

7 = 2(2) + b

7 = 4 + b

3 = b

**Step 4 : **

Now, plug m = 2 and b = 3 in slope-intercept form equation of a line.

y = mx + b

y = 2x + 3

**Step 5 : **

Predict the cost of a taxi ride that covers a distance of 6.5 miles.

Plug x = 6.5 in the equation y = 2x + 3.

y = 2(6.5) + 3

y = 13 + 3

y = 16

Hence, the cost of a taxi ride that covers a distance of 6.5 miles is $16.

Let us look at the next example on "Making predictions with linear equations"

**Example 2 : **

The table shows the temperature of a fish tank during an experiment. Write the appropriate linear equation for the given situation and use the equation to predict the temperature at the 7th hour. .

**Solution : **

**Step 1 : **

Notice that the change in the temperature is the same for each increase of 1 hour in time. So, the relationship is linear.

Since we want to find the temperature at the 7th hour, the appropriate linear equation for the given situation is slope-intercept form (y = mx + b), assuming "y" as temperature and "x" as hours.

**Step 2 : **

Choose any two points in the form (x, y), from the table to find the slope :

For example, let us choose (0, 82) and (1, 80).

Use the slope formula.

m = (y₂ - y₁) / (x₂ - x₁)

Substitute (0, 82) for (x₁, y₁) and (1, 80) for (x₂, y₂).

m = (80 - 82) / (1 - 0)

m = -2 / 1

m = -2

**Step 3 : **

Find the y-intercept using the slope and any point from the table.

Slope-intercept form equation of a line :

y = mx + b

Plug m = -2, and (x, y) = (0, 82)

82 = -2(0) + b

82 = 0 + b

82 = b

**Step 4 : **

Now, plug m = -2 and b = 82 in slope-intercept form equation of a line.

y = mx + b

y = -2x + 82

**Step 5 : **

Predict the temperature at the 7th hour.

Plug x = 7 in the equation y = -2x + 82.

y = -2(7) + 82

y = -14 + 82

y = 68

Hence, the temperature at the 7th hour is 68⁰ F.

Let us look at the next example on "Making predictions with linear equations"

**Example 3 : **

Elizabeth’s cell phone plan lets her choose how many minutes are included each month. The table shows the plan’s monthly cost y for a given number of included minutes x. Write an equation in slope-intercept form to represent the situation and use it to predict cost of plan for 800 minutes included.

**Solution : **

**Step 1 : **

Notice that the change in cost is the same for each increase of 100 minutes. So, the relationship is linear.

**Step 2 : **

Choose any two points in the form (x, y), from the table to find the slope :

For example, let us choose (100, 14) and (200, 20).

Use the slope formula.

m = (y₂ - y₁) / (x₂ - x₁)

Substitute (100, 14) for (x₁, y₁) and (200, 20) for (x₂, y₂).

m = (20 - 14) / (200 - 100)

m = 6 / 100

m = 0.06

**Step 3 : **

Find the y-intercept using the slope and any point from the table.

Slope-intercept form equation of a line :

y = mx + b

Plug m = 0.06, and (x, y) = (100, 14)

14 = 0.06(100) + b

14 = 6 + b

8 = b

**Step 4 : **

Now, plug m = 0.06 and b = 8 in slope-intercept form equation of a line.

y = mx + b

y = 0.06x + 8

**Step 5 : **

Predict cost of plan for 800 minutes included.

Plug x = 800 in the equation y = 0.06x + 8.

y = 0.06(800) + 8

y = 48 + 8

y = 56

Hence, the cost of plan for 800 minutes included is $56.

Let us look at the next example on "Making predictions with linear equations"

**Example 4 : **

The rent charged for space in an office building is a linear relationship related to the size of the space rented.At west main street office rentals, $750 rent charged for 600 square feet of space and $1150 rent charged for 900 square feet of space. Write an equation in slope-intercept form for the rent at West Main Street Office Rentals and use it to predict the rent for 1200 square feet of space.

**Solution : **

**Step 1 :**

Identify the independent and dependent variables.

The independent variable (x) is the square footage of floor space.

The dependent variable (y) is the monthly rent.

**Step 2 :**

Write the information given in the problem as ordered pairs.

The rent for 600 square feet of floor space is $750 :

(600, 750)

The rent for 900 square feet of floor space is $1150 :

(900, 1150)

**Step 3 : **

Find the slope.

m = (y₂ - y₁) / (x₂ - x₁)

Substitute (600, 750) for (x₁, y₁) and (900, 1150) for (x₂, y₂).

m = (1150 - 750) / (900 - 600)

m = 400 / 300

m = 4/3

**Step 4 : **

Find the y-intercept.

Use the slope 4/3 and one of the ordered pairs (600, 750).

Slope-intercept form :

y = mx + b

Plug m = 4/3, x = 600 and y = 750.

750 = (4/3)(600) + b

750 = (4)(200) + b

750 = 800 + b

-50 = b

**Step 5 : **

Substitute the slope and y-intercept.

Slope-intercept form

y = mx + b

Plug m = 4/3 and b = -50

y = (4/3)x + (-50)

y = (4/3)x - 50

**Step 6 : **

Predict the rent for 1200 square feet of space.

Plug x = 1200 in the equation y = (4/3)x - 50.

y = (4/3)(1200) - 50

y = 1600 - 50

y = 1550

Hence, the rent for 1200 square feet of space is $1550.

After having gone through the stuff given above, we hope that the students would have understood "Making predictions with linear equations".

Apart from the stuff given above, if you want to know more about "Making predictions with linear equations", please click here

Apart from the stuff given on "Making predictions with linear equations", if you need any other stuff in math, please use our google custom search here.

HTML Comment Box is loading comments...

**WORD PROBLEMS**

**HCF and LCM word problems**

**Word problems on simple equations **

**Word problems on linear equations **

**Word problems on quadratic equations**

**Area and perimeter word problems**

**Word problems on direct variation and inverse variation **

**Word problems on comparing rates**

**Converting customary units word problems **

**Converting metric units word problems**

**Word problems on simple interest**

**Word problems on compound interest**

**Word problems on types of angles **

**Complementary and supplementary angles word problems**

**Markup and markdown word problems **

**Word problems on mixed fractrions**

**One step equation word problems**

**Linear inequalities word problems**

**Ratio and proportion word problems**

**Word problems on sets and venn diagrams**

**Pythagorean theorem word problems**

**Percent of a number word problems**

**Word problems on constant speed**

**Word problems on average speed **

**Word problems on sum of the angles of a triangle is 180 degree**

**OTHER TOPICS **

**Time, speed and distance shortcuts**

**Ratio and proportion shortcuts**

**Domain and range of rational functions**

**Domain and range of rational functions with holes**

**Graphing rational functions with holes**

**Converting repeating decimals in to fractions**

**Decimal representation of rational numbers**

**Finding square root using long division**

**L.C.M method to solve time and work problems**

**Translating the word problems in to algebraic expressions**

**Remainder when 2 power 256 is divided by 17**

**Remainder when 17 power 23 is divided by 16**

**Sum of all three digit numbers divisible by 6**

**Sum of all three digit numbers divisible by 7**

**Sum of all three digit numbers divisible by 8**

**Sum of all three digit numbers formed using 1, 3, 4**

**Sum of all three four digit numbers formed with non zero digits**