CONDITIONAL  TRIGONOMETRIC IDENTITIES

Trigonometric identities are true for all admissible values of the angle involved. There are some trigonometric identities which satisfy the given additional conditions. Such identities are called conditional trigonometric identities.

Example 1 :

If A + B + C = π/2, prove that 

sin2A + sin2B + sin2C = 4cosAcosBcosC

Solution :

sin2A + sin2B + sin2C :

= 2sin(A + B)cos(A - B) + sin2C

= 2sin(90 - C)cos(A - B) + 2sinCcosC

= 2cosCcos(A - B) + 2sinCcosC

= 2cosC[cos(A - B) + sinC]

= 2cosC[cos(A - B) + sin(90 - (A + B)]

= 2cosC[cos(A - B) + cos(A + B)]

= 2cosC[2cosAcos(-B)]

= 2cosC[2cosAcosB]

= 4cosAcosBcosC

Example 2 :

If A + B + C = π/2, prove that 

cos2A + cos2B + cos2C = 1 + 4sinAsinBcosC

Solution :

cos2A + cos2B + cos2C :

Use the identity of (cosC + cosD) for cos2A + cos2B.

= 2cos(A + B)cos(A - B) + cos2C

= 2cos(90 - C)cos(A - B) + 1 - 2sin2C

= 2sinCcos(A - B) + 1 - 2sin2C

= 1 + 2sinC[cos(A - B) - sinC]

= 1 + 2sinC[cos(A - B) - sin(90 - (A + B)]

= 1 + 2sinC[cos(A - B) - cos(A + B)]

= 1 + 2sinC[-2sinAsin(-B)]

= 1 + 2sinC[2sinAsinB]

= 1 + 4sinAsinBsinC

Example 3 :

If triangle ABC is a right triangle and ∠A = π/2, then prove that

(i) cos2B + cos2C = 1

(ii) sin2B + sin2C = 1

(iii) cosB - cosC = -1 + 2√2cos(B/2)sin(C/2)

Solution :

(i) cos2 B + cos2 C = 1 :

In the right triangle ABC above, 

cosθ = Adjacent side/Hypotenuse

cosB = AB/BC

cosC = AC/BC

cos2B + cos2C  =  (AB/BC)2 + (AC/BC)2 

  =  (AB2 + AC2)/BC2

  =  BC2/BC2

  =  1

(ii) sin2 B + sin2 C = 1 :

In the right triangle ABC above, 

sinθ = Opposite side/Hypotenuse

sinB = AC/BC

sinC = AB/BC

 sin2B + sin2C = (AC/BC)2 + (AB/BC)2

= AC2/BC2 + (AB2/BC2)

= (AC2 + AB2)/BC2

= BC2/BC2

= 1

(iii) cosB − cosC = -1 + 2 √2 cos B/2 sin C/2 :

cosB - cosC = 2cos2B - 1 - cosC

= -1 + 2cos2B - cosC ----(1)

In the triangle ABC above, 

A + B + C = π

It is given that A = π/2. Then, 

B + C = π/2

C = π/2 - B

Substitute C = π/2 - B in (1).

= -1 + 2cos2(B/2) - cos(π/2 - B)

= -1 + 2cos2(B/2) - sinB

= -1 + 2cos2(B/2) - 2sin(B/2)cos(B/2)

= -1 + 2cos(B/2)(cos(B/2) - sin(B/2))

B = π/2 - C ----> B/2 = π/4 - C/2

= -1 + 2cos(B/2)[cos(π/4 -  C/2) - sin(π/4 - C/2)]

= -1 + 2cos(B/2)[cos(π/4 -  C/2) - cos(π/2 - (π/4 - C/2))]

= -1 + 2cos(B/2)[cos(π/4 -  C/2) - cos(π/4 + C/2)]

= -1 + 2cos(B/2)[-2sin(π/4)sin(-C/2)]

= -1 + 2cos(B/2)[2(1/√2)sin(C/2)]

= -1 + 2√2cos(B/2)sin(C/2)

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. How to Solve Age Problems with Ratio

    Mar 28, 24 02:01 AM

    How to Solve Age Problems with Ratio

    Read More

  2. AP Calculus BC Integration of Rational Functions by Partical Fractions

    Mar 26, 24 11:25 PM

    AP Calculus BC Integration of Rational Functions by Partical Fractions (Part - 1)

    Read More

  3. SAT Math Practice

    Mar 26, 24 08:53 PM

    satmathquestions1.png
    SAT Math Practice - Different Topics - Concept - Formulas - Example problems with step by step explanation

    Read More