ROLLE'S THEOREM

If f(x) be a real valued function that satisfies the following three conditions.

1) f(x) is defined and continuous on [a, b] 

2) f(x) is differentiable on (a, b)

3) f (a) = f (b)

then there exists at least one point c ∊ (a, b).

Such that f'(c)  =  0.

Example 1 :

Using Rolle's theorem find the values of c.

f(x)  =  x2-4x+3 ,  1 ≤ x ≤ 3

Solution :

(i) f (x) is continuous on [1, 3].

(ii) f(x) is differentiable (1, 3).

f(1)  =  12-4(1)+3

=  1-4+3

=  4-4 

=  0

f(3)  =  32-4(3)+3

=  9-12+3

=  12-12

=  0

(iii) f(1)  =  f(3).

All conditions are satisfied.

f'(c)  =  2x-4

To find that particular point we need to set f'(c)  =  0.

2c-4  =  0

c  =  2

So, c is 2.

Example 2 :

Using Rolle's theorem find the values of c.

f(x)  =  sin2 x ,   0 ≤ x ≤ Π

Solution :

(i) f (x) is continuous on [0 ,Π].

(ii) f(x) is differentiable (0,Π).

f(0)  =  sin2(0)  ==> 0

f(Π)  =  sin2 (Π)  ==>  0

f(0)  =   f(Π). All conditions are satisfied.

f'(x)  =  2sinx cos x

=  sin 2x 

f'(c)  =  sin 2c 

To find that particular point we need to set f'(c)  =  0

sin 2c  =  0

2c  =  sin-1 (0)

2c  =  0, Π, 2 Π, 3 Π , .............

c  =  Π/2  0 ≤ x ≤ Π

Example 3 :

Using Rolle's theorem find the points on the curve

y  =  x2+1,   - 2 ≤ x ≤ 2

where the tangent is parallel to x - axis.

Solution :

If f(x) be a real valued function that satisfies the following three conditions.

1)  f(x) is defined and continuous on [-2, 2] 

2)  f(x) is differentiable on interval (-2,2).

y  =  x2+1 

f(-2)  =  (-2)2 + 1

f(-2)  = 5

f(2)  =  22+1

f(2)  =  5

f(-2)  =  f(2)

from this we come to know that the given function satisfies all the conditions of Rolle's theorem.

c ∈ (-2, 2)

we can find the value of c by using the condition

f'(c)  =  0

f(x)  =  x2 + 1

f'(x)  =  2x

f'(c)  =  2c

f'(c)  =  0

2c  =  0  

 c  =  0

f (0) = 02 + 1  ==>  1

Therefore the required point on the curve is (0, 1).

Apart from the stuff given on, if you need any other stuff in math, please use our google custom search here.

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. Integration of cotx

    Mar 19, 24 12:35 AM

    Integration of cotx

    Read More

  2. Integration of tanx

    Mar 18, 24 01:00 PM

    Integration of tanx

    Read More

  3. integration of Sec Cube x

    Mar 18, 24 12:46 PM

    integration of Sec Cube x

    Read More