INTEGRATING TRIGONOMETRIC FUNCTIONS USING SUBSTITUTION

Key Idea :

Let us consider the integration of a function with respect to x. If the derivative of a part of the function is at somewhere of the function and you are able to multiply the derivative along with dx using multiplication, then you can integration the function using substitution.

Consider the following integration.

In the function the power of 'e' is x3. The derivative is x3 is 3x2 and it is being as a part of the function and we will be able to write the 3x2 along with dx using multiplication.

Now substitute a new variable for x3 for which we have the derivative 3x2 being a part of the given function.

Let u = x3.

u = x3

Differentiate with respect to x on both sides.

du/dx = 3x2

Multiply both sides by dx.

du = 3x2dx

In the given integration, substitute x3 = u and 3x2dx = du.

= ∫eudu

= eu + C

Substitute u = x3.

Problem 1 :

Integrate cos14 x sin x

Solution :

t  =  cos x

Differentiate with respect to x

dt  =  -sin x dx

sin x dx  =  -dt

=  ∫cos14 x sin x  dx

=  ∫t14  (-dt)

=  t(14+1)/(14+1) + C

=  t15/15 + C

=  (1/15) sin15 x + C

Problem 2 :

Integrate sin5 x

Solution :

=  ∫sin5 x  dx

=  ∫sin4 x sin x  dx

=  ∫(sin2x)2 sin x  dx

=  ∫(1 - cos2x)2 sin x  dx

t   =  cos x

dt  =  -sin x dx

sin x dx  =  - dt

=  ∫ (1-t2)2 (-dt)

=  ∫ (1-t4-2t2) (-dt)

=  ∫(t4+2t2-1) dt

=  ∫t4 dt + ∫2t2 dt - ∫1 dt

=  t5/5 + 2t3/3 - t + C

=  (1/5)cos5x + (2/3)cos3x - cos x + C

Problem 3 :

Integrate cos7x

Solution :

=  ∫ cos⁷x dx

=  ∫cos6x cos x   dx

=  ∫(cos2 x)3 cos x  dx

=  ∫ (1-sin2x)3 cos x  dx

t  =  sin x

dt  =  cos x dx

=  ∫ (1-t2)3 dt

(a - b)3  =  a3-3a2 b+3ab2-b3

=  ∫ [(1-3t2+3t4-t6] dt

=  t-3t3/3 + 3t5/5- t7/7 + C

=  t - t3+ 3t5/5- t7/7 + C

=  sin x - sin3x+ (3/5)sin5x - (1/7) sin7x + C

Problem 4 :

Integrate (1 + tan x)/(x + log sec x)

Solution :

t  =  (x+log sec x)

dt  =  1 + (1/sec x) sec x tan x

dt  =  1+tan x

=  ∫dt/t

=  log t + C

=  log (x + log sec x) + C

Problem 5 :

Integrate e^(m tan-1x)/(1+x²)

Solution :

t  =  tan-1x

dt  =  1/(1+x²) dx

=  ∫e^(m tan-1x)/(1+x²) dx

=  ∫emt dt

=  emt/m + C

=  e^(m tan-1x)/m + C

Problem 6 :

Integrate x sin-1 (x2)/√(1-x4)

Solution :

t  =  sin-1 (x2)

dt  =  [1/√(1 - (x²)²] (2 x) dx

dt/2  =  [1/√(1 - x⁴] x dx

=  ∫x sin-1 (x2)/√(1 - x4) dx

=  ∫ t (dt/2)

=  (1/2) ∫t dt

=  (1/2) t2/2 + C

=  (1/4) [sin-1 (x2)]2 + C

Problem 7 :

Integrate 5 (x + 1) (x + log x)4/x

Solution :

t  =  (x+log x)

differentiating with respect to x

dt  =  [1+(1/x)] dx

dt  =  [(x+1)/x)] dx

=  ∫5 (x+1) (x+log x)4/x dx

=  ∫5 t4 dt

= 5 t5/5 + C

=  t5 + C

=  (x + log x)5 + C

Problem 8 :

Integrate sin (log x)/x

Solution :

t  =  log x

differentiating with respect to "x"

dt  =  (1/x) dx

=  ∫sin (log x)/x dx

=  ∫sin t dt

=  cos t + C

=  cos (log x) + C 

Problem 9 :

Integrate cot x/log sin x

Solution :

t  =  log sin x

dt  =  (1/sin x)cos x dx

dt  =  cot x

=  ∫cot x/log sin x dx

=  ∫(1/t) dx

=  log t + C

=  log (log sin x) + C

Problem 10 :

Integrate sec4x tan x

Solution :

=  ∫ sec4xtan x dx

=  ∫sec3 x (sec x tan x) dx

t  =  sec x

differentiating with respect to x

dt  =  sec x tan x dx

=  ∫t3 dt

=  (t4/4) + C

=  (sec 4 x/4) + C

Problem 11 :

Integrate tan³x sec x

Solution :

=  ∫tan³x sec x dx

t  =  sec x

differentiating with respect to x

dt  =  sec x tan x dx

=  ∫tan 2x tan x sec x dx

= ∫(sec2x - 1) tan x sec x dx

=  ∫(sec3 x tan x - tan x sec x) dx

= ∫ sec2 x sec x tan x dx - ∫ tan x sec x dx

= ∫ t2 dt - ∫ dt

=  t3/3 dt - t + C

=  (sec3x/3) - sec x + C

Problem 12 :

Integrate sin x/sin (x + a)

Solution :

=  ∫sin x/sin (x+a) dx

=  ∫ sin (x+a-a)/sin (x + a) dx

sin (A- B) = sin A cos B - cos A sin B

=  ∫[sin (x+a) cos a - cos (x+a) sin a]/sin (x+a) dx

=  ∫[sin (x+a) cos a]/sin (x+a) dx - ∫[cos (x+a) sin a]/sin (x+a) dx

=  ∫cos a dx-∫cot (x+a) sin a dx

=  cos ax - sin a log sin (x+a) + C

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. De Moivre's Theorem and Its Applications

    Apr 19, 24 08:30 AM

    De Moivre's Theorem and Its Applications

    Read More

  2. First Fundamental Theorem of Calculus - Part 1

    Apr 17, 24 11:27 PM

    First Fundamental Theorem of Calculus - Part 1

    Read More

  3. Polar Form of a Complex Number

    Apr 16, 24 09:28 AM

    polarform1.png
    Polar Form of a Complex Number

    Read More