SOLVING QUADRATIC EQUATION BY FACTORING PRACTICE

Solve the following quadratic equations by factorization method.

(i)  (2x + 3)2-81  =  0  

(ii)  3x2–5x–12  =  0  

(iii) √5 x2+2x–3√5  =  0 

(iv) 3(x2–6)  =  x(x+7)–3

(v) 3x–(8/x)  =  2

(vi) x+(1/x)  =  (26/5)

(vii) [x/(x+1)] + [(x + 1)/x] = 34/15

(viii) a2b2x2 – (a2 - b2) x + 1 = 0

(ix) 2(x + 1)2 – 5 (x + 1)  =  12

(x) 3 (x – 4)2 – 5(x – 4)  =  12

Solution

Question 1 :

3x2–5x–12  =  0

Solution :

3x2–5x–12  =  0

3x2–9x+4x–12  =  0

3x(x–3)+4(x–3)  =  0

(3x+4) (x-3)  =  0

3x+4  =  0

3x  =  -4

x  =  -4/3

x-3  =  0

x  =  3

So, the solution is {-4/3, 3}.

Question 2 :

(2x + 3)2-81  =  0

Solution :

(2x + 3)2-81  =  0

(2x + 3)2 =  81

Taking square roots on both sides, we get

(2x + 3) =  81

(2x + 3) =  ±9

2x+3  =  9

2x  =  6

x  =  3

2x+3  =  -9

2x  =  -12

x  =  -6

So, the solution is {-6, 3}.

Question 3 :

√5x2+2x–3√5  =  0

Solution :

 √5x2+5x-3x–3√5  =  0

√5x(x+√5)–3(x+√5)  =  0

(√5x–3)(x+√5)  =  0

√5x–3  =  0

√5x  =  3

x  =  3/√5

x + √5  =  0

x  =  -√5 

So, the solution is {-√5, 3/√5}.

Question 4 :

3(x2–6)  =  x(x+7)–3

Solution :

3(x2–6)  =  x(x+7)–3

3x2–18  =  x2+7x–3

3x2-x2–7x–18+3  =  0

2x2–7x–15  =  0

2x2–10x+3x–15  =  0

2x(x–5)+3(x–5)  =  0

(2x+3)(x–5)  =  0

2x+3  =  0

2x  =  -3

x  =  -3/2

x-5  =  0

x  =  5

So, the solution is {-3/2, 5}.

Question 5 :

3x – (8/x)  =  2

Solution :

(3x2 – 8)/x  =  2

(3x2 – 8)  =  2x

3x2-2x–8  =  0

3x2-6x+4x–8  =  0

3x(x–2)+4(x–2)  =  0

(3x+4) (x–2)  =  0

3x+4  =  0

3x  =  -4

x  =  -4/3

x-2  =  0

x  =  2

So, the solution is {-4/3, 2}.

Question 6 :

x+(1/x)  =  (26/5)

Solution :

(x2 + 1)/x  =  26/5

5(x2+1)  =  26x

5x2+5  =  26x

5x2-26x+5  =  0

5x2-25x–x+5  =  0

5x(x-5)–1(x–5)  =  0

(5x–1) (x–5)  =  0

5x-1  =  0

5x  =  1

x  =  1/5

x-5  =  0

x  =  5

So, the solution is {1/5, 5}.

Question 7 :

[x/(x+1)]+[(x+1)/x]  =  34/15

Solution :

[x/(x+1)]+[(x+1)/x]  =  34/15

[x2+(x+1)2]/[x(x+1)]  =  34/15

[x2+(x2+2x+1)]/(x2+x)  =  34/15

15 (2x2+2x+1)  =  34 (x2+x)

30x2+30x+15  =  34x2+34x

34x2-30x2+34x–30x–15  =  0

4x2+4x–15  =  0

4x2+10x-6x–15  =  0

2x(2x+5)–3(2x+5)  =  0

(2x–3)(2x+5)  =  0

2x-3  =  0

2x  =  3

x  =  3/2

2x+5  =  0

2x  =  -5

x  =  -5/2

So, the solution is {-5/2, 3/2}.

Question 8 :

a2b2x2– (a2-b2)x+1  =  0

Solution :

a2b2x2– (a2-b2)x+1  =  0

a2b2x2– a2x+b2x+1  =  0

a2x (b2x–1)-1(b2x–1)  =  0

(b2x–1) (a2x–1)  =  0

b2x–1  =  0

b2x  =  1

x  =  1/b2

a2x–1  =  0

a2x  =  1

x  =  1/a2

So, the solution is {1/a2, 1/b2}.

Question 9 :

2(x+1)2 – 5(x+1)  =  12

Solution :

Let y  =  x+1

2y2–5y  =  12

2y2–5y–12  =  0

2y2–8y+3y–12  =  0

2y(y–4)+3(y–4)  =  0

(2y+3) (y–4)  =  0

2y+3  =  0

2y  =  -3

y  =  -3/2

y-4  =  0

y  =  4

Now we have to apply the values of y in the equation

y  =  x + 1

x+1  =  -3/2

x  =  (-3/2) - 1

x  =  -5/2

x+1  =  4

x  =  3

So, the solution is {-5/2, 3}.

Question 10 :

3(x–4)2– 5(x – 4)  =  12

Solution :

Let y = x – 4

3y2–5y  =  12

3y2–5y–12  =  0

3y2–9y+4y-12  =  0

3y(y–3)+4(y–3)  =  0

(3y+4)(y–3)  =  0

3y+4  =  0

3y  =  -4

y  =  -4/3

y-3  =  0

y  =  3

To find the value of x we have to apply the values of y in the equation x  =  y + 4.

x  =  (-4/3)+4

x  =  8/3

x  =  3+4

x  =  7

So, the solution is {8/3, 7}.

Apart from the stuff given in this section if you need any other stuff in math, please use our google custom search here.

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. First Fundamental Theorem of Calculus - Part 1

    Apr 17, 24 11:27 PM

    First Fundamental Theorem of Calculus - Part 1

    Read More

  2. Polar Form of a Complex Number

    Apr 16, 24 09:28 AM

    polarform1.png
    Polar Form of a Complex Number

    Read More

  3. Conjugate of a Complex Number

    Apr 15, 24 11:17 PM

    conjugateofcomplexnumber1.png
    Conjugate of a Complex Number

    Read More