DOUBLE ANGLE IDENTITIES

Double angle identities are a special case of the sum identities. That is, when the two angles are equal, the sum identities are reduced to double angle identities. They are useful in solving trigonometric equations and also in the verification of trigonometric identities.

Further double angle identities can be used to derive the reduction identities (power reducing identities). Also double angle identities are used to find maximum or minimum values of trigonometric expressions.

Identity 1 : sin2A = 2sinAcosA

Proof : 

We know that

sin(α + β) = sinα cosβ + cosα sinβ

Taking α = β = A, we have 

sin(A + A) = sinA cosA + cosA sinA

sin2A = 2sinA cosA

Identity 2 : cos2A = cos2A - sin2A

Proof : 

We know that

cos(α + β) = cosα cosβ - sinα sinβ

Taking α = β = A, we have 

cos(A + A) = cosA cosA + sinA sinA

cos2A = cos2A - sin2A

From cos2A = cos2A - sin2A, 

cos2A = cos2A - (1 - cos2A)

= cos2A - 1 + cos2A

cos2A = 2cos2A - 1

And also, 

cos2A = (1 - sin2A) - sin2A

= 1 - sin2A - sin2A

cos2A = 1 - 2sin2A

Identity 3 : tan2A = 2tanA/(1 - tan2A)

Proof : 

We know that

tan(α + β) = (tanα + tanβ)/(1 - tanα tanβ)

Taking α = β = A, we have 

tan(A + A) = (tanA + tanA)/(1 - tanA tanA)

tan2A = 2tanA/(1 - tan2A)

Identity 4 : sin2A = 2tanA/(1 + tan2A)

Proof : 

We know that

sin2A = 2sinA cosA

= (2sinA cosA)/1

= (2sinA cosA) / (sin2A + cos2A)

Divide both numerator and denominator by cos2A.

= [(2sinA cosA)/cos2A] / [(sin2A + cos2A)/cos2A]

= [2sinA/cosA] / [sin2A/cos2A + cos2A/cos2A]

= 2tanA/(tan2A + 1)

sin2A = 2tanA/(1 + tan2A)

Identity 5 : cos2A = (1 - tan2A)/(1 + tan2A)

Proof : 

We know that

cos2A = cos2A - sin2A

= (cos2A - sin2A)/1

= (cos2A - sin2A)/(cos2A + sin2A)

Divide both numerator and denominator by cos2A.

= [(cos2A - sin2A)/cos2A] / [(sin2A + cos2A)/cos2A]

cos2A = (1 - tan2A)/(1 + tan2A)

Sine : 

sin2A = 2sinAcosA

sin2A = 2tanA/(1 + tan2A)

Cosine : 

cos2A = cos2A - sin2A

cos2A = 2cos2A - 1

cos2A = 1 - 2sin2A

cos2A = (1 - tan2A)/(1 + tan2A)

Tangent : 

tan2A = 2tanA/(1 - tan2A)

Practice Problems

Problem 1 : 

Find the value of sin2θ, when sinθ = 12/13, θ lies in the first quadrant. 

Solution : 

Using a right angle, we can find that cosθ = 5/13. 

sin2θ = 2sinθcosθ

= 2(12/13)(5/13)

= 120/169

Problem 2 : 

Find the value of cos2A, when tanA = 16/63, A lies in the first quadrant. 

Solution : 

Using a right angle, we can find that sinA = 16/65. 

cos2A = 1 - 2sin2A

= 1 - 2(16/65)2

= 1 - 2(256/4225)

= 1 - 512/4225)

= (4225 - 512)/4225

= 3713/4225

Problem 3 : 

Prove that :

cos4A - sin4A = cos2A

Solution : 

cos4A - sin4A : 

= (cos2A)2 - (sin2A)2

= (cos2A + sin2A)(cos2A - sin2A)

= 1(cos2A)

= cos2A

Problem 4 : 

Prove that : 

(sinA + cosA)2 - (sinA - cosA)= 2sin2A

Solution : 

(sinA + cosA)2 - (sinA - cosA)2 :

= sin2A + cos2A + 2sinAcosA - (sin2A + cos2A - 2sinAcosA)

= sin2A + cos2A + 2sinAcosA - sin2A - cos2A + 2sinAcosA

= 4sinAcosA

= 2 ⋅ 2sinAcosA

= 2sin2A

Apart from the stuff given above, if you need any other stuff in math, please use our google custom search here.

Kindly mail your feedback to v4formath@gmail.com

We always appreciate your feedback.

©All rights reserved. onlinemath4all.com

Recent Articles

  1. Writing Quadratic Functions in Standard Form Worksheet

    Apr 27, 24 12:26 AM

    tutoring.png
    Writing Quadratic Functions in Standard Form Worksheet

    Read More

  2. Writing Quadratic Functions in Standard Form

    Apr 27, 24 12:13 AM

    Writing Quadratic Functions in Standard Form or Vertex Form

    Read More

  3. How to Find the Vertex of a Quadratic Function in General Form

    Apr 27, 24 12:06 AM

    How to Find the Vertex of a Quadratic Function in General Form

    Read More