CONVERTING UNIT RATES WORKSHEET

About "Converting unit rates worksheet"

Converting unit rates worksheet is much required to the students who would like to practice problems on "Unit rate" 

First let us understand what is unit rate. 

Unit rate definition (or) Definition of unit rate : 

Unit rate compares the given amount to one unit of another measure

(or)

The ratio between the given value and 1 

(or)

Comparing the given amount or value to 1

Examples :

1. If 8 dolls are made in 4 days, 

then number of dolls made in 1 day  =  2

2. If David earns $180 in 9 hours, 

then number of dollars earned by him in 1 hour  =  $ 20

3. If there are 16 cups in 4 quarts,

then the number of cups in 1 quart = 4 

Liquid Measurements - Unit rates

From the above picture, we can get the following unit rates related liquid measurements.

1 gallon  =  16 cups

1 gallon  =  8 pints

1 gallon  = 4 quarts 

1 quart  =  2 pints

1 quart  =  4 cups 

1 pint  =  2 cups 

Converting unit rates worksheet - Problems

Here we are going to look at unit rate word problems.

1. In a business, if A can earn $ 7500 in 2.5 years, find the unit rate of his earning per month. 

2. If David can prepare 2 gallons of juice in 4 days, how many  cups of juice can he prepare per day ? 

3. If John can cover 360 miles in 3 hours, find the number of miles covered by John in 1 minute.  

4. 75 basketballs cost $1,143.75. Find the unit rate in price per basketball. 

5. In 36.5 weeks, Miguel raised $2,372.50 for cancer research. How was his unit rate in price per week? 

6. Shanel walks 2/ 5 of a mile every 1/7 hour. Express her speed as a unit rate in miles per hour.

7. Declan use 2 /35 of a gallon of gas for every 4 /5 of a mile that he drives. At this rate, how many miles can he drive on one gallon of gas? 

8. A person can cover a distance of 84 miles in 4 gallons of fuel. If he has 2.5 gallons, how many miles can he cover ?

9. If a person drinks 8 cups of apple juice per month, how many gallons will he drink in one year?

10. My David earns $416 in 8 hours. How much does earn in 2.8 hours ?

Do you need answers for the above questions ?

Here they are .

Step by step solution

Problem 1 :

In a business, if A can earn $ 7500 in 2.5 years, find the unit rate of his earning per month. 

Solution : 

Given : Earning in 2.5 years  =  $ 7500

1 year  =  12 months 

2.5 years  =  2.5 x 12  =  30 months   

Then, earning in 30 months  =  $ 7500

Therefore, earning in 1 month  =  7500 / 30  =  $ 250

Hence, the unit rate of his earning per month is $ 250

Let us look at the next problem on "Converting unit rates worksheet"

Problem 2 :

If David can prepare 2 gallons of juice in 4 days, how many  cups of juice can he prepare per day ? 

Solution : 

No of gallons of juice prepared in 4 days  =  2 gallons

1 gallon  =  16 cups

So, no. of cups of juice prepared in 4 days  =  2 x 16  =  32 cups

Therefore, David can prepare 32 cups of juice in 4 days. 

Then, no. of cups of juice prepared in 1 day  =  32 / 4  =  8

Hence, David can prepare 8 cups of juice in 1 day. 

Let us look at the next problem on "Converting unit rates worksheet"

Problem 3 :

If John can cover 360 miles in 3 hours, find the number of miles covered by John in 1 minute.  

Solution : 

No of miles covered in 3 hours  =  360 

Then, no. of miles covered in 1 hour  =  360 / 3  =  120 

1 hour  =  60 minutes

So, no. of miles covered in 60 minutes  =  120

Then, no. of miles covered 1 minute  =  120 / 60  =  2

Hence, John can cover 2 miles in 1 minute. 

Let us look at the next problem on "Converting unit rates worksheet"

Problem 4 : 

75 basketballs cost $1,143.75. Find the unit rate in price per basketball. 

Solution :

Given : 75 basketballs cost $1,143.75

Then, price pf one basket ball  =  1143.75 / 75  =  15.25

Hence, the unit rate in price per basket ball is $ 15.25

Let us look at the next problem on "Converting unit rates worksheet"

Problem 5 :

In 36.5 weeks, Miguel raised $2,372.50 for cancer research. How was his unit rate in price per week? 

Solution :

Given : Miguel raised $2, 372.50 in 36.5 weeks 

Then, amount raised in one week  =  2372.5 / 36.5  =  65

Hence, the unit rate in price per week was $ 65

Let us look at the next problem on "Converting unit rates worksheet"

Problem 6 : 

Shanel walks 2/ 5 of a mile every 1/7 hour. Express her speed as a unit rate in miles per hour. 

Solution : 

Given : Shanel walks 2/ 5 of a mile every 1/7 hour

We know the formula for speed.

That is,  Speed  =  Distance / time

Speed  =  (2/5)  /  (1/7)

Speed  =  (2/5)  x  (7/1)

Speed  =  14 / 5

Speed  =  2.8 miles per hour. 

Hence, the speed of Shanel is 2.8 miles per hour

Let us look at the next problem on "Converting unit rates worksheet"

Problem 7 : 

Declan use 2 /35 of a gallon of gas for every 4 /5 of a mile that he drives. At this rate, how many miles can he drive on one gallon of gas? 

Solution : 

Given : In 2 /35 of a gallon of gas, 4 /5 of a mile is traveled

Then, in  1 gallon of gas  =  (4/5) x (35/2) miles traveled. 

in  1 gallon of gas  =  14 miles traveled. 

Hence, Declan can drive 14 miles in 1 gallon of gas

Let us look at the next problem on "Converting unit rates worksheet"

Problem 8 : 

A person can cover a distance of 84 miles in 4 gallons of fuel. If he has 2.5 gallons, how many miles can he cover ?

Solution : 

Given : 84 miles can be traveled in 4 gallons. 

Then, no. of miles traveled in 1 gallon  =  84 / 4  =  21

Therefore, no. of miles traveled in 2.5 gallons  =  21 x 2.5  =  52.5   

Hence, 52.5 miles traveled in 2.5 gallons of fuel  

Let us look at the next problem on "Converting unit rates worksheet"

Problem 9 : 

If a person drinks 8 cups of apple juice per month, how many gallons will he drink in one year?

Solution : 

Given : 8 cups in one month 

1 year  =  12 months 

So, no. of cups in 1 year  =  8 x 12  =  96 cups

1 gallon  =  16 cups

Therefore, no. of gallons in 1 year  =  96 / 16  =  6 

Hence, he will drink 6 gallons of apple juice in 1 year

Let us look at the next problem on "Converting unit rates worksheet"

Problem 10 :

My David earns $416 in 8 hours. How much does earn in 2.8 hours ?

Solution : 

Given : Earning in 8 hours  =  $ 416

Earning in 1 hour  =  $ 52

Earning in 2.8 hours  =  52 x 2.8  =  145.6

Hence, Mr. David will earn $145.6 in 2.8 hours

If you need any other stuff in math, please use our google custom search here.

HTML Comment Box is loading comments...

ALGEBRA

Variables and constants

Writing and evaluating expressions

Solving linear equations using elimination method

Solving linear equations using substitution method

Solving linear equations using cross multiplication method

Solving one step equations

Solving quadratic equations by factoring

Solving quadratic equations by quadratic formula

Solving quadratic equations by completing square

Nature of the roots of a quadratic equations

Sum and product of the roots of a quadratic equations 

Algebraic identities

Solving absolute value equations 

Solving Absolute value inequalities

Graphing absolute value equations  

Combining like terms

Square root of polynomials 

HCF and LCM 

Remainder theorem

Synthetic division

Logarithmic problems

Simplifying radical expression

Comparing surds

Simplifying logarithmic expressions

Negative exponents rules

Scientific notations

Exponents and power

COMPETITIVE EXAMS

Quantitative aptitude

Multiplication tricks

APTITUDE TESTS ONLINE

Aptitude test online

ACT MATH ONLINE TEST

Test - I

Test - II

TRANSFORMATIONS OF FUNCTIONS

Horizontal translation

Vertical translation

Reflection through x -axis

Reflection through y -axis

Horizontal expansion and compression

Vertical  expansion and compression

Rotation transformation

Geometry transformation

Translation transformation

Dilation transformation matrix

Transformations using matrices

ORDER OF OPERATIONS

BODMAS Rule

PEMDAS Rule

WORKSHEETS

Converting customary units worksheet

Converting metric units worksheet

Decimal representation worksheets

Double facts worksheets

Missing addend worksheets

Mensuration worksheets

Geometry worksheets

Comparing  rates worksheet

Customary units worksheet

Metric units worksheet

Complementary and supplementary worksheet

Complementary and supplementary word problems worksheet

Area and perimeter worksheets

Sum of the angles in a triangle is 180 degree worksheet

Types of angles worksheet

Properties of parallelogram worksheet

Proving triangle congruence worksheet

Special line segments in triangles worksheet

Proving trigonometric identities worksheet

Properties of triangle worksheet

Estimating percent worksheets

Quadratic equations word problems worksheet

Integers and absolute value worksheets

Decimal place value worksheets

Distributive property of multiplication worksheet - I

Distributive property of multiplication worksheet - II

Writing and evaluating expressions worksheet

Nature of the roots of a quadratic equation worksheets

Determine if the relationship is proportional worksheet

TRIGONOMETRY

SOHCAHTOA

Trigonometric ratio table

Problems on trigonometric ratios

Trigonometric ratios of some specific angles

ASTC formula

All silver tea cups

All students take calculus 

All sin tan cos rule

Trigonometric ratios of some negative angles

Trigonometric ratios of 90 degree minus theta

Trigonometric ratios of 90 degree plus theta

Trigonometric ratios of 180 degree plus theta

Trigonometric ratios of 180 degree minus theta

Trigonometric ratios of 180 degree plus theta

Trigonometric ratios of 270 degree minus theta

Trigonometric ratios of 270 degree plus theta

Trigonometric ratios of angles greater than or equal to 360 degree

Trigonometric ratios of complementary angles

Trigonometric ratios of supplementary angles 

Trigonometric identities 

Problems on trigonometric identities 

Trigonometry heights and distances

Domain and range of trigonometric functions 

Domain and range of inverse  trigonometric functions

Solving word problems in trigonometry

Pythagorean theorem

MENSURATION

Mensuration formulas

Area and perimeter

Volume

GEOMETRY

Types of angles 

Types of triangles

Properties of triangle

Sum of the angle in a triangle is 180 degree

Properties of parallelogram

Construction of triangles - I 

Construction of triangles - II

Construction of triangles - III

Construction of angles - I 

Construction of angles - II

Construction angle bisector

Construction of perpendicular

Construction of perpendicular bisector

Geometry dictionary

Geometry questions 

Angle bisector theorem

Basic proportionality theorem

ANALYTICAL GEOMETRY

Analytical geometry formulas

Distance between two points

Different forms equations of straight lines

Point of intersection

Slope of the line 

Perpendicular distance

Midpoint

Area of triangle

Area of quadrilateral

Parabola

CALCULATORS

Matrix Calculators

Analytical geometry calculators

Statistics calculators

Mensuration calculators

Algebra calculators

Chemistry periodic calculator

MATH FOR KIDS

Missing addend 

Double facts 

Doubles word problems

LIFE MATHEMATICS

Direct proportion and inverse proportion

Constant of proportionality 

Unitary method direct variation

Unitary method inverse variation

Unitary method time and work

SYMMETRY

Order of rotational symmetry

Order of rotational symmetry of a circle

Order of rotational symmetry of a square

Lines of symmetry

CONVERSIONS

Converting metric units

Converting customary units

WORD PROBLEMS

HCF and LCM  word problems

Word problems on simple equations 

Word problems on linear equations 

Word problems on quadratic equations

Algebra word problems

Word problems on trains

Area and perimeter word problems

Word problems on direct variation and inverse variation 

Word problems on unit price

Word problems on unit rate 

Word problems on comparing rates

Converting customary units word problems 

Converting metric units word problems

Word problems on simple interest

Word problems on compound interest

Word problems on types of angles 

Complementary and supplementary angles word problems

Double facts word problems

Trigonometry word problems

Percentage word problems 

Profit and loss word problems 

Markup and markdown word problems 

Decimal word problems

Word problems on fractions

Word problems on mixed fractrions

One step equation word problems

Linear inequalities word problems

Ratio and proportion word problems

Time and work word problems

Word problems on sets and venn diagrams

Word problems on ages

Pythagorean theorem word problems

Percent of a number word problems

Word problems on constant speed

Word problems on average speed 

Word problems on sum of the angles of a triangle is 180 degree

OTHER TOPICS 

Profit and loss shortcuts

Percentage shortcuts

Times table shortcuts

Time, speed and distance shortcuts

Ratio and proportion shortcuts

Domain and range of rational functions

Domain and range of rational functions with holes

Graphing rational functions

Graphing rational functions with holes

Converting repeating decimals in to fractions

Decimal representation of rational numbers

Finding square root using long division

L.C.M method to solve time and work problems

Translating the word problems in to algebraic expressions

Remainder when 2 power 256 is divided by 17

Remainder when 17 power 23 is divided by 16

Sum of all three digit numbers divisible by 6

Sum of all three digit numbers divisible by 7

Sum of all three digit numbers divisible by 8

Sum of all three digit numbers formed using 1, 3, 4

Sum of all three four digit numbers formed with non zero digits

Sum of all three four digit numbers formed using 0, 1, 2, 3

Sum of all three four digit numbers formed using 1, 2, 5, 6

HTML Comment Box is loading comments...