Adjoint of Matrix Questions 5





In this page adjoint of matrix questions 5 we are going to see solution of question 5 based on the topic ad-joint of matrix.

Question 5

Find the ad-joint of the following matrix

 
4 2 1
6 3 4
2 1 0
 


Solution:

minor of 4

=
3 4
1 0

adjoint of matrix questions 5

   = [0-4]

   = (-4)

   = -4

Cofactor of 4

   =  + (-4)

   =    -4

minor of 2

=
6 4
2 0

   = [0-8]

   = (-8)

   = -8

Cofactor of 2

   =  - (-8)

   =    8

minor of 1

=
6 3
2 1

   = [6-6]

   = (0)

   = 0

Cofactor of 1

   =  + (0)

   =    0

minor of 6

=
2 1
1 0

   = [0-1]

   = (-1)

   = -1

Cofactor of 6

   =  - (-1)

   =    1

minor of 3

=
4 1
2 0

   = [0-2]

   = (-2)

   = -2

Cofactor of 3

   =  + (-2)

   =    -2

minor of 4

=
4 1
2 0

   = [4-4]

   = (0)

   = 0

Cofactor of 4

   =  - (0)

   =    0

minor of 2

=
2 1
3 4

   = [8-3]

   = (5)

   = 5

Cofactor of 2

   =  + 5

minor of 1

=
4 1
6 4

   = [16-6]

   = 10

Cofactor of 1

   =  -(10)

   = -10

minor of 0

=
4 2
6 3

   = [12-12]

   = 0

Cofactor of 0

   =  +(0)

   = 0

adjoint of matrix questions 5

co-factor matrix =

 
-4 8 0
1 -2 0
5 -10 0
 

adjoint of matrix=

 
-4 1 5
8 -2 -10
0 0 0
 







Adjoint of Matrix Question5 to Minor of a Matrix
HTML Comment Box is loading comments...