Adjoint of Matrix Questions 4





In this page adjoint of matrix questions 4 we are going to see solution of question 4 based on the topic ad-joint of matrix.

Question 4

Find the ad-joint of the following matrix

 
1 1 -1
2 -3 4
3 -2 3
 


Solution:

minor of 1

=
-3 4
-2 3

   = [-9-(-8)]

   = (-9+8)

   = -1

Cofactor of 1

   =  + (-1)

   =    -1

minor of 1

=
2 4
3 3

   = [6-12]

   = (-6)

   = -6

Cofactor of 1

   =  - (-6)

   =    6

minor of -1

=
2 -3
3 -2

   = [-4-(-9)]

   = (-4+9)

   = 5

Cofactor of -1

   =  +(5)

   =    5

minor of 2

=
1 -1
-2 3

   = [3-2]

   = (1)

   = 1

Cofactor of 2

   =  - (1)

   =    -1

minor of -3

=
1 -1
3 3

   = [3-(-3)]

   = (3+3)

   = 6

Cofactor of -3

   =  + (6)

   =    6

minor of 4

=
1 1
3 -2

   = [-2-3]

   = (-5)

   = -5

Cofactor of 4

   =  - (-5)

   =    5

minor of 3

=
1 -1
-3 4

   = [4-3]

   = (1)

   = 1

Cofactor of 3

   =  +(1)

   =    1

minor of -2

=
1 -1
2 4

   = [4-(-2)]

   = (4+2)

   = 6

Cofactor of -2

   =  -(6)

   =    -6

minor of 3

=
1 1
2 -3

   = [-3-2]

   = (-5)

   = -5

Cofactor of 3

   =  +(-5)

   =    -5

adjoint of matrix questions 4  adjoint of matrix questions 4

co-factor matrix =

 
-1 6 5
-1 6 5
1 -6 -5
 

adjoint of matrix=

 
-1 -1 1
6 6 -6
5 5 -5
 







HTML Comment Box is loading comments...